risk analysis
Type of resources
Keywords
Publication year
Topics
-
Note: A more recent version of this product is available. This dataset contains the high voltage electricity transmission lines that make up the electricity transmission network in Australia. For government use only. Access through negotiation with Geoscience Australia
-
Evidence based disaster management enables decision makers to manage more effectively because it yields a better informed understanding of the situation. When based on evidence, the decision making process delivers more rational, credible and objective disaster management decisions, rather than those influenced by panic. The translation of fundamental data into information and knowledge is critical for decision makers to act and implement the decisions. The evidence from appropriate information helps both tactical and strategic responses to minimise impacts on community and promote recovery. The information requirements of such a system are quite comprehensive in order to estimate the direct and indirect losses; the short and long term social and economic resilience. Disasters may be of rapid onset in nature like earthquakes, tsunamis and blast. Others are slow onset such those associated with gradual climate change. Climate change has become a real challenge for all nations and the early adaptors will reduce risk from threats such as increased strength of tropical cyclones, storm surge inundations, floods and the spread of disease vectors. The Australian Government has recognised the threats and prioritised adaptation as an opportunity to enhance the nation's existing infrastructure and thereby reduce risk. A thorough understanding of the exposure under current and future climate projections is fundamental to this process of future capacity building. The nation's exposure to these increased natural hazards includes all sectors from communities to businesses, services, lifeline utilities and infrastructure. The development of a National Exposure Information System (NEXIS) is a significant national capacity building task being undertaken by Geoscience Australia (GA). NEXIS is collecting, collating, managing and providing the exposure information required to assess multi-hazard impacts.
-
Wildfires are one of the major natural hazards facing the Australian continent. Chen (2004) rated wildfires as the third largest cause of building damage in Australia during the 20th Century. Most of this damage was due to a few extreme wildfire events. For a vast country like Australia with its sparse network of weather observation sites and short temporal length of records, it is important to employ a range of modelling techniques that involve both observed and modelled data in order to produce fire hazard and risk information/products with utility. This presentation details the use of statistical and deterministic modelling of both observations and synthetic climate model output (downscaled gridded reanalysis information) in the development of extreme fire weather potential maps. Fire danger indices such as the McArthur Fire Forest Danger Index (FFDI) are widely used by fire management agencies to assess fire weather conditions and issue public warnings. FFDI is regularly calculated at weather stations using measurements of weather variables and fuel information. As it has been shown that relatively few extreme events cause most of the impacts, the ability to derive the spatial distribution of the return period of extreme FFDI values contributes important information to the understanding of how potential risk is distributed across the continent. The long-term spatial tendency FFDI has been assessed by calculating the return period of its extreme values from point-based observational data. The frequency and intensity as well as the spatial distribution of FFDI extremes were obtained by applying an advanced spatial interpolation algorithm to the recording stations' measurements. As an illustration maps of 50 and 100-year return-period (RP) of FFDI under current climate conditions are presented (based on both observations and reanalysis climate model output). MODSIM 2013 Conference
-
Geoscience Australia (GA) is currently undertaking a process of revising the Australian National Earthquake Hazard Map using modern methods and an updated catalogue of Australian earthquakes. This map is a key component of Australia's earthquake loading standard, AS1170.4. Here we present an overview of work being undertaken within the GA Earthquake Hazard Project towards delivery of the next generation earthquake hazard map. Knowledge of the recurrence and magnitude (including maximum magnitude) of historic and pre-historic earthquakes is fundamental to any Probabilistic Seismic Hazard Assessment (PSHA). Palaeoseismological investigation of neotectonic features observed in the Australian landscape has contributed to the development of a Neotectonic Domains model which describes the variation in large intraplate earthquake recurrence behaviour across the country. Analysis of fault data from each domain suggests that maximum magnitude earthquakes of MW 7.0-7.5±0.2 can occur anywhere across the continent. In addition to gathering information on the pre-historic record, more rigorous statistical analyses of the spatial distribution of the historic catalogue are also being undertaken. Earthquake magnitudes in Australian catalogues were determined using disparate magnitude formulae, with many local magnitudes determined using Richter attenuation coefficients prior to about 1990. Consequently, efforts are underway to standardise magnitudes for specific regions and temporal periods, and to convert all earthquakes in the catalogue to moment magnitude. Finally, we will review the general procedure for updating the national earthquake hazard map, including consideration of Australian-specific ground-motion prediction equations. We will also examine the sensitivity of hazard estimates to the assumptions of certain model components in the hazard assessment.
-
Full Version - shows orthographic and fly-through sequence for each of 5 scenarios with a combined max. inundation outline fly-through at end. Description. - Tropical Cyclone Alby passed close to the southwest corner of West Australia on April 4th 1978. Large waves and a storm surge generated by the northerly winds caused substantial coastal erosion along the Lower West coast particularly in the Geographe Bay area. Low-lying areas at Bunbury and Busselton were flooded, forcing the evacuation of many homes including the Bunbury Nursing Home. An approximate 1.1 m storm surge at Busselton caused the tide to peak at 2.5 m about 1 m above the highest astronomical tide. The Busselton Jetty was severely damaged. At Fremantle the surge was about 0.6 m causing a high tide of 1.8 m, about 0.5 m above the highest astronomical tide. [From BOM - http://www.bom.gov.au/weather/wa/cyclone/about/perth/alby.shtml - Retrieved 21/01/2010] This movie displays the results of a number of simulated storm surge events caused by an equivalent storm to Tropical Cyclone Alby on the current built terrain of Mandurah, and projected 2100 coastline with 0.5, 0.8 and 1.1m rises in sea level. Scenario A TC Alby equivalent at current sea level Scenario B Worst case TC Alby equivalent with current sea level Scenario C Worst case TC Alby equivalent in 2100 with 0.5m sea level rise Scenario D Worst case TC Alby equivalent in 2100 with 0.8m sea level rise Scenario E Worst case TC Alby equivalent in 2100 with 1.1m sea level rise
-
An increase in the frequency and intensity of storms, coastal flooding, and spread of disease as a result of projected climate change and sea-level rise is likely to damage built environments and adversely affect a significant proportion of Australia's population. Understanding the assets at risk from climate change hazards is critical to the formulation of adaptation responses and early action is likely to be the most cost effective approach to managing the risk. Understanding the level of exposure of assets, such as buildings, lifeline utilities and infrastructure, under current and future climate projections is fundamental to this process. The National Exposure Information System (NEXIS) is a significant national capacity building task being undertaken by Geoscience Australia (GA). NEXIS is collecting, collating, managing and providing the exposure information required to assess climate change impacts. It provides residential, business and infrastructure exposure information derived from several fundamental datasets. NEXIS is also expanding to include institutions (such educational, health, emergency, government and community buildings) and lifeline support infrastructure exposure. It provides spatial exposure data in GIS format at a building level and is often provided to clients for an area of interest. It is also designed to predict future exposure for climate change impact analysis. NEXIS is currently sourcing more specific datasets from various data custodians including state and local governments along with private data providers. NEXIS has been utilised in various climate change impact projects undertaken by CSIRO, the Department of Climate Change (DCC), the Department of Environment, Water, Heritage and the Arts (DEWHA), and several universities. Examples of these projects will be outlined during the presentation.
-
11-5413 The Probabilistic Volcanic Ash - Hazard Map movie describes how you construct a probabilistic hazard map for volcanic ash, using an example scenario from GA's volcanic ash modelling work in West Java, Indonesia. The target audience is other govt. agencies both national and international, and the general public. The 3.3 minute movie uses 3D Max animations and 2D affects, has narration and production music. The narration will also be done in Bahasa Indonesian, at a later date.
-
A comprehensive earthquake impact assessment requires an exposure database with attributes that describe the distribution and vulnerability of buildings in the region of interest. The compilation of such a detailed database will require years to develop for a moderate-sized city, let alone on a national scale. To hasten this database development in the Philippines, a strategy has been employed to involve as many stakeholders/organizations as possible and equip them with a standardized tool for data collection and management. The best organizations to tap are the local government units (LGUs) since they have better knowledge of their respective area of responsibilities and have a greater interest in the use of the database. Such a tool is being developed by PHIVOLCS-DOST and Geoscience Australia. Since there are about 1,495 towns and cities in the country with varying financial capacities, this tool should involve the use of affordable hardware and software. It should work on ordinary hardware, such as an ordinary light laptop or a netbook that can easily be acquired by these LGUs. The hardware can be connected to a GPS and a digital camera to simultaneously capture images of structures and their location. The system uses an open source database system for encoding the building attributes and parameters. A user-friendly GUI with a simplified drop-down menu, containing building classification schema, developed in consultation with local engineers, is utilised in this system. The resulting national database is integrated by PHIVOLCS-DOST and forms part of the Rapid Earthquake Damage Assessment System (REDAS), a hazard simulation tool that is also made available freely to partner local government units.
-
Climate change is expected to exacerbate a range of natural hazards in Australia leading to more severe community impacts in the future. There is a need to adapt to a changing hazard environment and increasing community exposure in regions most likely influenced by climate change. Through this paper GA develops a methodology for projecting Australian communities in a spatial sense into the future. The application of this methodology is demonstrated in a case study. In order to address the fact that the impacts of climate change are expected to be more evident in the second half of this century, this model was to extend beyond the 30 year limitation of finer scale population projections, dwelling projections and development plans.
-
The Rapid Inventory Collection System (RICS) is a vehicular data collection system (image and GPS) used for building/infrastructure damage and inventory assessment. The system consists of Ethernet cameras attached to a tripod mounted on a motor vehicle, a GPS receiver and software written in C++. The RICS data was used by the 2009 Victorian Bushfires Royal Commission for the impact assessment (field survey) which quantified the extent and severity of the damage caused by the fire-storm.