From 1 - 1 / 1
  • As part of Geoscience Australia’s Exploring for the Future program, this study aims to analyse the hydrocarbon prospectivity in the Carrra Sub-basin through wireline log interpretation and shale gas reservoir characterisation. NDI Carrara 1 is the first stratigraphic test of the Carrara Sub-basin, a recently uncovered depocentre located within the South Nicholson region of the eastern Northern Territory and northwestern Queensland. Four chemostratigraphic packages were defined according to the informal sub-division of stratigraphy and inorganic geochemical properties. Wireline log interpretation has been conducted to derive the clay mineral compositions, porosity, gas saturation and gas contents for the unconventional shale gas reservoirs in the Proterozoic succession in NDI Carrara 1. The predominant clay minerals include illite/muscovite, mixed-layer clay, smectite, kaolinite, and minor contents of glauconite and chlorite. The average geothermal gradient is estimated to be 35.04 °C/km with a surface temperature of 29.4 °C. The average formation pressure gradient is calculated to be < 10.7 MPa/km from mud weight records. Artificial neural network technology is used to interpret the TOC content from wireline logs for unconventional shale gas reservoirs. TOC content is positively correlated with methane and ethane concentrations in mudlog gas profiles, shale porosity, formation resistivity and gas content for NDI Carrara 1. The organic-rich shales in P2 have favourable adsorbed, free and total gas contents. The organic-rich micrites within P3 have the potential in adsorbed gas, but with very low average gas saturation (< 0.01 m3/m3). Our interpretation has identified potential shale gas reservoirs, as well as tight non-organic-rich shales and siltstones with potential as gas reservoirs. These occur throughout several of the identified chemostratigraphic packages within the Proterozoic section of NDI Carrara 1.