From 1 - 10 / 498
  • Summary of GA's plans for marine seismic and reconnaissance surveys off southwestern Australia in 2008/09 as part of the Offshore Energy Security Program

  • The Early Cretaceous Gage Sandstone and South Perth Shale formations are a prospective reservoir-seal pair in the Vlaming Sub-basin. Plays include post-breakup pinch-outs in the Gage Sandstone with the South Perth Shale forming top seal. The Gage reservoir has porosities of 18-25% and permeabilities of 1-1340 mD. It was deposited in palaeotopographic lows of the Valanginian breakup unconformity and is the lowstand component of the thick deltaic South Perth (SP) Supersequence. To characterise the reservoir-seal pair, a detailed sequence stratigraphic analysis was conducted by integrating 2D seismic interpretation, well log analysis and new biostratigraphic data. Palaeogeographic reconstructions for the SP Supersequence were derived from mapping higher-order prograding packages and establishing changes in sea level and sediment supply. Higher resolution Gage reservoir reconstructions were based on seismic facies mapping. The Gage reservoir forms part of a sand-rich submarine fan system similar to model proposed by Richards et al (1998). It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain. Directions of sediment supply are complex, with major sediment contributions from a northern and southern canyon adjacent to the Badaminna Fault Zone. The characteristics of the SP Supersequence differ markedly between the northern and southern parts of the sub-basin due to variations in palaeotopography and sediment supply. Palaeogeographic reconstructions reveal a series of regressions and transgressions leading to infilling of the palaeo-depression. Palaeogeographic reconstructions for the SP Supersequence portray a complex early post-rift depositional history in the central Vlaming Sub-basin. The developed approach is applicable for detailed studies of other sedimentary basins. APPEA

  • An extensive AEM survey recently commissioned by Geoscience Australia involved the use of two separate SkyTEM helicopter airborne electromagnetic (AEM) systems collecting data simultaneously. In order to ensure data consistency between the two systems, we follow the Danish example (conceived by the hydrogeophysics group from Aarhus University) of using a hover test site to calibrate the AEM data to a known reference. Since 2001, Denmark has employed a national test site for all electromagnetic (EM) instruments that are used there, including the SkyTEM system. The Lyngby test-site is recognised as a well-understood site with a well-described layered-earth structure of 5 layers. The accepted electrical structure model of the site acts as the reference model, and all instruments are brought to it in order to produce consistent results from all EM systems. Using a ground-based time-domain electromagnetic (TEM) system which has been calibrated at the Lyngby test site, we take EM measurements at a site selected here in Australia. With sufficient information of the instrument, we produce a layered-earth model that becomes the reference model for the two AEM systems used in the survey. We then bring the SkyTEM systems to the hover site and take soundings at multiple altitudes. From the hover test data and the ground based model, we calculate an optimal time shift and amplitude scale factor to ensure that both systems are able reproduce the accepted reference model. Conductivity sections produced with and without calibration factors show noticeably different profiles.

  • The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. In 2011, twenty-nine areas in eight offshore basins are being released for work program bidding. Closing dates for bid submissions are either six or twelve months after the release date, i.e. 13 October 2011 and 12 April 2012, depending on the exploration status in these areas and on data availability. The 2011 Release is the largest since the year 2000 with all 29 areas, located in Commonwealth waters offshore Northern Territory, Western Australia, Victoria and Tasmania, covering approximately 200,000 km2. The producing hydrocarbon provinces of the Carnarvon, Otway and Gippsland basins are represented by gazettal blocks that are located close to existing infrastructure and are supported by extensive open file data-sets. Other areas that are close to known oil and gas discoveries lie in the Caswell Sub-basin (eastern Browse Basin) and on the Ashmore Platform (north-western Bonaparte Basin). A particular aspect of the 2011 Release is provided by 13 areas in underexplored regions offshore Northern Territory and Western Australia all of which range from 100 to 280 graticular blocks in size. These areas, located in the Money Shoal; outer Browse, Roebuck, north-eastern Carnarvon, Southern Carnarvon and North Perth basins, offer new opportunities for data-acquisition and regional exploration. The release of three large areas in the Southern Carnarvon and North Perth basins is supported by new data acquired and interpreted by Geoscience Australia as part of the Offshore Energy Security Program, of which selected results are being presented at this year's conference.

  • Wildfires are one of the major natural hazards facing the Australian continent. Chen (2004) rated wildfires as the third largest cause of building damage in Australia during the 20th Century. Most of this damage was due to a few extreme wildfire events. For a vast country like Australia with its sparse network of weather observation sites and short temporal length of records, it is important to employ a range of modelling techniques that involve both observed and modelled data in order to produce fire hazard and risk information/products with utility. This presentation details the use of statistical and deterministic modelling of both observations and synthetic climate model output (downscaled gridded reanalysis information) in the development of extreme fire weather potential maps. Fire danger indices such as the McArthur Fire Forest Danger Index (FFDI) are widely used by fire management agencies to assess fire weather conditions and issue public warnings. FFDI is regularly calculated at weather stations using measurements of weather variables and fuel information. As it has been shown that relatively few extreme events cause most of the impacts, the ability to derive the spatial distribution of the return period of extreme FFDI values contributes important information to the understanding of how potential risk is distributed across the continent. The long-term spatial tendency FFDI has been assessed by calculating the return period of its extreme values from point-based observational data. The frequency and intensity as well as the spatial distribution of FFDI extremes were obtained by applying an advanced spatial interpolation algorithm to the recording stations' measurements. As an illustration maps of 50 and 100-year return-period (RP) of FFDI under current climate conditions are presented (based on both observations and reanalysis climate model output). MODSIM 2013 Conference

  • Magnetotelluric data were acquired for Geoscience Australia by contract along the north-south 08GA-C1-Curnamona seismic traverse to the east of Lake Frome from November 2008 to January 2009 as part of the Australian Government's energy security initiative. 25 sites were spaced an average of 10 km apart, and five-component broadband data were recorded with a frequency bandwidth of 0.001 Hz to 250 Hz and dipole lengths of 100 m. Apparent resistivity and phase plots are presented, along with dimensional analyses of the data based on rotational invariants, the representation of the data by the phase tensor, and Parkinson arrows. These analyses provide insight into the complexity of the Earth conductivity giving rise to the MT responses and are a useful precursor to modelling.

  • The inventory of over 200 fault scarps captured in GA's Australian neotectonics database has been used to estimate the maximum magnitude earthquake (Mmax) across the Stable Continental Regions (SCRs) of Australia. This was done by first grouping the scarps according to the spatial divisions described in the recently published neotectonics domain model and calculating the 75th percentile scarp length for each domain. The mean Mmax was then found by averaging the maximum magnitudes predicted from a range of different published relations. Results range between Mw 7.0-7.5±0.2. This suggests that potentially catastrophic earthquakes are possible Australia-wide. These data can form the basis for future seismic hazard assessments, including those for building design codes, both in Australia and analogous SCRs worldwide.

  • This final paper for the session presents the results of the new draft earthquake hazard assessment for Australia and compares them to the previous AS1170.4 hazard values. Draft hazard maps will be presented for several spectral periods (0.0, 0.2 and 1.0 s) at multiple return periods (500, 2500 and 10,000 years). These maps will be compared with both the current earthquake hazard used in AS1170.4 and with other assessments of earthquake hazard in Australia. In general the hazard in the draft map is higher in the western cratonic parts of Australia than it is in the eastern non-cratonic parts of Australia. Where regional source zones are included, peaks in hazard values in the map are generally comparable to those in the current AS1170.4 map. When seismicity 'hotspot zones are included, as described in the previous paper, several of them produce much higher hazard peaks than any in the AS1170.4 map. However, such hotspots do not affect as large an area as many of those in the current AS1170.4 map. Finally, hazard curves for different cities will also be presented and compared to those predicted by the method outlined in AS1170.4.

  • In the 2011/12 Budget, the Australian Government announced funding of a four year National CO2 Infrastructure Plan (NCIP) to accelerate the identification and development of suitable long term CO2 storage sites, within reasonable distances of major energy and industrial emission sources. The NCIP funding follows on from funding announced earlier in 2011 from the Carbon Storage Taskforce through the National Carbon Mapping and Infrastructure Plan and previous funding recommended by the former National Low Emissions Coal Council. Four offshore sedimentary basins and several onshore basins have been identified for study and pre-competitive data acquisition.

  • The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. In 2010, thirty-one areas in five offshore basins are being released for work program bidding. Closing dates for bid submissions are either six or twelve months after the release date, i.e. 11 November 2010 and 12 May 2011, depending on the exploration status in these areas and on data availability. The 2010 Release Areas are located in Commonwealth waters offshore Northern Territory, Western Australia, and South Australia, comprising intensively explored areas close to existing production as well as new frontiers. The Westralian Superbasin along the North West Shelf continues to feature prominently and is complimented by a new frontier area in offshore SW Australia (Mentelle Basin) and by two areas in the Ceduna/Duntroon Sub-basins in the eastern part of the Bight Basin. The Bonaparte Basin is represented by three areas in the Petrel Sub-basin and two areas in the Vulcan Sub-basin. Further southwest, four large areas are being released in the outer Roebuck Basin, a significantly underexplored region. This year, the Carnarvon Basin provides 16 Release Areas of which three are located in the Beagle Sub-basin, five in the Dampier Sub-basin, five in the Barrow Sub-basin, three on the Exmouth Plateau and three in the Exmouth Sub-basin. The largest singular Release Area covers much of the Mentelle Basin in offshore SW Australia and two areas are available in the Ceduna and Duntroon sub-basins as part of South Australia's easternmost section of the Bight Basin. The 2010 Offshore Acreage Release offers a wide variety of block sizes in shallow as well as deep water environments. Area selection has been undertaken in consultation with industry, the States and Territory. As part of Geoscience Australia's Offshore Energy Security Program, new data has been acquired in offshore frontier regions parts of which are being published on the Mentelle Basin