Authors / CoAuthors
Abstract
The middle to lower Jurassic sequence in Australia's Surat Basin has been identified as a potential reservoir system for geological CO2 storage. The sequence comprises three major formations with distinctly different mineral compositions, and generally low salinity formation water (TDS<3000 mg/L). Differing geochemical responses between the formations are expected during geological CO2 storage. However, given the prevailing use of saline reservoirs in CCS projects elsewhere, limited data are available on CO2-water-rock dynamics during CO2 storage in such low-salinity formations. Here, a combined batch experiment and numerical modelling approach is used to characterise reaction pathways and to identify geochemical tracers of CO2 migration in the low-salinity Jurassic sandstone units. Reservoir system mineralogy was characterized for 66 core samples from stratigraphic well GSQ Chinchilla 4, and six representative samples were reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures. Low formation water salinity, temperature, and mineralization yield high solubility trapping capacity (1.18 mol/L at 45°C, 100 bar), while the paucity of divalent cations in groundwater and the silicate reservoir matrix results in very low mineral trapping capacity under storage conditions. Formation water alkalinity buffers pH at elevated CO2 pressures and exerts control on mineral dissolution rates. Non-radiogenic, regional groundwater-like 87Sr/86Sr values (0.7048-0.7066) indicate carbonate and authigenic clay dissolution as the primary reaction pathways regulating solution composition, with limited dissolution of the clastic matrix during the incubations. Several geochemical tracers are mobilised in concentrations greater than found in regional groundwater, most notably cobalt, concentrations of which are significantly elevated regardless of CO2 pressure or sample mineralogy.
Product Type
nonGeographicDataset
eCat Id
79628
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationScientific Journal Paper
- ( Theme )
-
- carbon dioxide
- ( Theme )
-
- climate
- ( Theme )
-
- geochemistry
- ( Theme )
-
- geological storage of CO2
- ( Theme )
-
- geological sequestration
-
- Queensland
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Geochemistry
-
- Published_Internal
Publication Date
2014-05-15T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.