Authors / CoAuthors
Kirkby, A.L. | Ayling, B.F.
Abstract
To be technically viable, a geothermal energy prospect has two requirements: sufficiently high temperatures at economically-accessible depths; and a viable reservoir from which to extract the heat by flowing fluid at a suitable rate. In recent years, Geoscience Australia (GA) has applied conductive thermal modelling to 3D geological maps to improve predictive targeting of elevated temperatures in the Australian crust. GA is developing capability to improve targeting of favourable reservoir characteristics, using a combination of geothermal modelling techniques, and the use of geophysical and other geoscience data. GA's assessments of crustal temperature potential have incorporated temperature measurements, heat flow data, thermal conductivity measurements and heat production estimates based on geochemistry data. They have also incorporated other datasets such as outcrop geology, drillhole intersections, seismic and gravity data. GA's initial assessment of North Queensland was qualitative and based on a 2D GIS approach. Subsequent assessments were quantitative and based on 3D thermal models, however, due to computational restrictions; uncertainty in the temperature predictions was assessed only qualitatively. More recently, thermal modelling was conducted on a 3D geological map of the Cooper Basin region in South Australia and Queensland (Meixner et al., 2012) using the SHEMAT software (Clauser, 2003). Uncertainty in the temperature predictions was estimated via a Monte-Carlo based approach using the National Computational Infrastructure (NCI) at the Australian National University. The second requirement for a viable geothermal energy prospect is reservoir potential. GA is developing capability to identify reservoir potential using two related approaches. The first involves use of the TOUGH2-MP reservoir modelling code on the NCI. This code will be used to simulate fluid-flow in synthetic geothermal reservoirs with varying geometries and permeability structures, to identify the most desirable characteristics. The second approach involves application of geophysical methods to improve predictive targeting of geothermal reservoirs. GA has used numerical modelling techniques to improve predictive targeting of elevated crustal temperatures and is now building capability to assist predictive targeting of favourable reservoir characteristics. This will allow new geothermal targets to be identified based on the two geological requirements for a successful geothermal prospect. By applying this approach on a national scale, GA will be able to provide an integrated, Australia-wide assessment of geothermal potential. Clauser, C. (ed.), 2003. Numerical Simulation of Reactive Flow in Hot Aquifers: SHEMAT and Processing SHEMAT. Springer-Verlag: Berlin Heidelberg. Meixner, A.J., Kirkby, A.L., Lescinsky, D.T., and Horspool, N., 2012b. The Cooper Basin 3D Map Version 2: Thermal modelling and temperature uncertainty. Record 2012/60. Geoscience Australia: Canberra.
Product Type
nonGeographicDataset
eCat Id
76315
Contact for the resource
Custodian
Owner
Custodian
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationAbstract
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Geothermics and Radiometrics
-
- Published_Internal
Publication Date
2013-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
notPlanned
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.