Authors / CoAuthors
Vidal-Gilbert, S. | Tenthorey, E. | Dewhurst, D. | Ennis-King, J. | van Ruth, P.
Abstract
A geomechanical assessment of the Naylor Field, Otway Basin, Australia has been undertaken to investigate the possible geomechanical effects of CO2 injection and storage. The study aims to evaluate the geomechanical behaviour of the caprock/reservoir system and to estimate the risk of fault reactivation. The stress regime in the onshore Victorian Otway Basin is inferred to be strike-slip if the maximum horizontal stress is calculated using frictional limits and DITF (drilling induced tensile fracture) occurrence, or normal if maximum horizontal stress is based on analysis of dipole sonic log data. The NW-SE maximum horizontal stress orientation (142 degrees N) determined from a resistivity image log is broadly consistent with previous estimates and confirms a NW-SE maximum horizontal stress orientation for the Otway Basin. An analytical geomechanical solution is used to describe stress changes in the subsurface of the Naylor Field. The computed reservoir stress path for the Naylor Field is then incorporated into fault reactivation analysis to estimate the minimum pore pressure increase required to cause fault reactivation (Pp) The highest reactivation propensity (for critically-oriented faults) ranges from an estimated pore pressure increase (Pp) of 1MPa to 15.7MPa (estimated pore pressure of 18.5-233. MPa) depending on assumptions made about maximum horizontal stress magnitude, fault strength,reservoir stress path and Biot's coefficient. The critical pore pressure changes for known faults at Naylor Field range from an estimated pore pressure increase (Pp) of 2MPa to 17MPa (estimated pore pressure of 19.5-34.5 MPa).
Product Type
nonGeographicDataset
eCat Id
70951
Contact for the resource
Custodian
Owner
Custodian
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Digital Object Identifier
Keywords
-
- External Publication
- ( Theme )
-
- carbon dioxide
- ( Theme )
-
- geological storage of CO2
- ( Theme )
-
- 3D model
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2010-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
4
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Source Information
Source data not available.