Authors / CoAuthors
Davies, G. | Roberts, S.
Abstract
A new finite volume algorithm to solve the two dimensional shallow water equations on an unstructured triangular mesh has been implemented in the open source ANUGA software, jointly developed by the Australian National University and Geoscience Australia. The algorithm allows for 'discontinuous-elevation', or 'jumps' in the bed profile between neighbouring cells. This has a number of benefits compared with previously implemented 'continuous-elevation' approaches. Firstly it can preserve stationary states at wet-dry fronts, while also permitting simulation of very shallow frictionally dominated flow down slopes as occurs in direct-rainfall flood models. Additionally the use of discontinuous-elevation enables the sharp resolution of rapid changes in the topography associated with e.g. narrow rectangular drainage channels, or buildings, without the computational expense of a very fine mesh. The approach also supports a simple and computationally efficient treatment of river walls. A number of benchmark tests are presented illustrating these features of the algorithm, along with its application to urban flood hazard simulation and comparison with field data.
Product Type
document
eCat Id
82337
Contact for the resource
Custodian
Owner
Custodian
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External Publication
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Natural Hazards
-
- Published_External
Publication Date
2014-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
Lineage
Developed internally for conference
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Source Information
None None