From 1 - 10 / 106
  • We combine two- and three-dimensional seismic stratigraphic interpretation with paleobathymetric analysis from benthic foraminifera to understand the genetic significance of prominent seismic discontinuity surfaces typically mapped as "sequence boundaries" and "flooding surfaces" in the late Paleogene-early Neogene Northern Carnarvon Basin. The progradational succession, dominated by heterozoan carbonate sediments, is divided into five northwest-prograding clinoformal sequences and 19 sub-sequences. Clinoform fronts progress from smooth to highly dissected, with intense gullying apparent only after the mid Miocene optimum. Once initiated, gullies become the focus for sediment distribution across the front. Bottomsets remain relatively sediment-starved without the development of aprons on the lower slope and basin. Small-scale variability suggests heterogeneous sediment dispersal through the slope conduits. Along-strike sediment transport superimposed on progradation changes from south-directed in the late Oligocene to north-directed in the late mid-Miocene suggesting a major reorganization of circulation in the southeastern Indian Ocean. Prominent seismic discontinuity surfaces represent both intervals of shallow paleo-water depth and flooding of the shelf. Partial exposure of the shelf indicated by karst morphology is coeval with middle to outer neritic paleo-water depths on the outer shelf. Rather than build to sea-level, progradation occurs with shelf paleo-water depths at the clinoform rollover >100 m. Therefore, in the Northern Carnarvon Basin onlap onto the clinoform front is not coastal and the sensitivity of the clinoforms to sea-level changes is muted.

  • Poorly exposed Paleoproterozoic sandstones and siltstones of the Killi Killi Formation record developement of a large turbidite complex. Killi Killi Formation sediments were eroded from the uplifted ~1860 Ma Nimbuwah and Hooper Orogens as indicated by detrital zircons with sediment deposition at ~1840 Ma. Facies analysis, isopach maps and detrital zircon populations, combined with Sm-Nd data from the Tanami region and Halls Creek Orogen, confirm the previously suggested correlation of the Paleoproterozoic successions in the Eastern zone of the Halls Creek Orogen and the Tanami region. Detrital zircons from the Aileron Province suggest the turbidite complex extends into the Arunta region, however, high metamorphic grade precludes direct facies comparisons in the Arunta region. Portions of the turbidite complex in the Tanami region are dominated by mudstones, consisting of low-density turbidites and associated hemipelagites, that potentially acted as a redox boundary to gold-bearing fluid. Gold prospectivity in turbiditic systems is increased within these mudstone sequences with the potential for further gold discoveries.

  • The warm greenhouse world of the Late Cretaceous created an ocean that was poorly stratified latitudinally and vertically. Periodically these oceans experienced globally significant events where oxygen minimum zones enveloped the continental margins. Evidence of the effect of one of these Ocean Anoxic Events (OAE?s) is preserved in the southern high latitude strata of the Otway Basin in southeast Australia. During the Late Cretaceous, thick sequences of mudstone-dominated deltaic sediments (the Otway Delta) were deposited in an elongate inlet (ca. 500km wide) between Antarctica and Australia located at least 70?S. The initial Turonian strata of this delta (the Waarre Formation) were deposited in marginal marine delta plain to delta front conditions. The overlying Flaxman Formation and basal Belfast Mudstone preserve evidence of transgressive inner to middle shelf upper delta to prodelta conditions. These Turonian units were subject to periodic dysoxia. The conditions that created this dysoxia in the region were similar to those of the high northern latitude Cretaceous Interior Seaway of North America where intermittent freshwater input and deepening seas caused periods of thermohaline stratification and reduced bottom waters. The overlying Coniacian to Santonian Belfast Mudstone was deposited in outer shelf to upper slope prodelta conditions subject to periodic fluctuations in dysoxia with normal marine salinities. After a period when the oxygen minimum zone contracted, upward-increasing dysoxia in the Belfast Mudstone herald the onset of the Coniacian to Santonian OAE 3. This was the last OAE of the Late Cretaceous, prior to the onset of more ?modern? oceanic conditions. The fluctuations in TOC and hydrogen index in these strata reflect variable dysoxic conditions similar to that reported for OAE 3 in the tropical eastern Atlantic by Hofmann et al. (2003). This periodicity implies a very active and dynamic Late Cretaceous hydrosphere. Eventually, hyposaline conditions or higher sedimentation rates due to upper delta progradation and shallowing in the Santonian caused the local extinction and dissolution of many of the calcareous benthic taxa of the Belfast Mudstone.

  • A new sequence stratigraphic framework has been developed for the Otway Basin based on the interpretation and integration of offshore wells, key onshore wells, new biostratigraphic results and a regional grid of 2D seismic data. In the new tectonostratigraphic framework, seven major basin phases and their eight component supersequences are recognised as follows: 1) Tithonian?-Barremian rifting of the Crayfish Supersequence 2) Aptian-Albian post-rift deposition of the Eumeralla Supersequence 3) mid-Cretaceous compression and inversion 4) Late Cretaceous rifting of the Shipwreck and Sherbrook Supersequences 5) latest Maastrichtian to Middle Eocene basin reorganisation and early thermal subsidence of the Wangerrip Supersequence 6) local inversion and thermal subsidence of the Nirranda Supersequence (Middle Eocene to Early Oligocene) followed by thermal subsidence and progressive compression of the Heytesbury Supersequence (Late Oligocene to Late Miocene) leading to Late Miocene uplift and erosion and 7) Plio-Pleistocene deposition of the Whalers Bluff Supersequence. Basin phases are distinguished by their different tectonic driving mechanisms as the primary control on the creation of accommodation space. The supersequences are bounded by regional unconformities and define major episodes of sedimentation within each basin phase. Supersequences are related to second-order transgressive-regressive cycles within the basin and are regionally mappable. The new sequence stratigraphic framework is then used as the basis for correlation to deep-water regions where well-control is limited or absent. The framework is also used to help place existing, complex, facies-dependent lithostratigraphic schemes into depositional and petroleum systems context.

  • The Bight Basin in offshore southern Australia is one of the few remaining major frontier basins in the world. Following the initiation of sea-floor spreading between Australia and Antarctica in the late Santonian, a large deltaic system, known as the Hammerhead Delta, built out into the Ceduna Sub-basin. At the end of the Cretaceous the major influx of siliciclastic sediment ceased. Most of the area of the former delta has been subsequently dominated by marly sedimentation in relatively deepwater. The Hammerhead delta strata extend over an area of over 100,000 km2 and are up to 5000 m thick. Although the Hammerhead Delta built out on a continental margin, the strata have a number of marked differences to strata in well-documented late Cenozoic deltas that built out in such settings. There is a very limited progradation of the Upper Cretaceous shelf break in the Ceduna basin. Instead there is a high preservation of the delta topset strata which are composed predominantly of highstand system tracts with progradational and aggradational parasequence sets. Coal-bearing strata occur landward of the shoreface deposits. In places the parasequence stacking patterns result in large clinoform structures that are up to 700 m in amplitude. The scale of these clinoforms suggest the possibility that they were steep enough for the generation of turbidity currents and consequently there may well be some submarine fan deposits preserved at the base of the clinoforms, landward of the Upper Cretaceous shelf break.

  • The conjugate margins of Wilkes Land, Antarctica, and the Great Australian Bight (GAB) are amongst the least understood continental margins. Break up along the GAB-Wilkes Land part of the Australian-Antarctic margin commenced at approximately 83 Ma. Using recent stratigraphic interpretations developed for the GAB, we have established a sequence stratigraphy for the Wilkes Land margin that will, for the first time, allow for a unified study of the conjugate margins. By reconstructing the two margins to their positions prior to break up we were able to identify comparable packages on the Wilkes Land margin to those recognised on the GAB margin. Excluding the glacial sediments on the Antarctic margin, the sedimentary sequence along the Wilkes Land margin is very thin compared to the GAB margin, which has substantially more syn- and post-rift sediments. Despite the differences in thickness, the syn-rift sedimentary package on the Wilkes Land margin exhibits a similar style of extensional faulting and seismic character to its GAB margin counterpart. In comparison, post-rift sequences on the Wilkes Land margin are markedly different in geometry and seismic character from those found on the GAB margin. Isopach mapping shows substantial differences in the thickness of the post-breakup sediments, suggesting different sediment sources for the two margins. The Late Cretaceous Hammerhead Supersequence provides much of the post-rift thickness for the GAB margin as a result of large sediment influx into the basin. This supersequence is characterised by a thick progradational succession and was deposited in fluvio-deltaic and marine environments. The equivalent succession on the Wilkes Land margin has a different seismic character. It is thinner and aggradational, suggesting a distal marine environment of deposition.

  • 1. Blevin et al.:Hydrocarbon prospectivity of the Bight Basin - petroleum systems analysis in a frontier basin 2. Boreham et al : Geochemical Comparisons Between Asphaltites on the Southern Australian Margin and Cretaceous Source Rock Analogues 3. Brown et al: Anomalous Tectonic Subsidence of the Southern Australian Passive Margin: Response to Cretaceous Dynamic Topography or Differential Lithospheric Stretching? 4. Krassay and Totterdell : Seismic stratigraphy of a large, Cretaceous shelf-margin delta complex, offshore southern Australia 5. Ruble et al : Geochemistry and Charge History of a Palaeo-Oil Column: Jerboa-1, Eyre Sub-Basin, Great Australian Bight 6. Struckmeyer et al : Character, Maturity and Distribution of Potential Cretaceous Oil Source Rocks in the Ceduna Sub-Basin, Bight Basin, Great Australian Bight 7. Struckmeyer et al: The role of shale deformation and growth faulting in the Late Cretaceous evolution of the Bight Basin, offshore southern Australia 8. Totterdell et al : A new sequence framework for the Great Australian Bight: starting with a clean slate 9. Totterdell and Bradshaw : The structural framework and tectonic evolution of the Bight Basin 10. Totterdell and Krassay : The role of shale deformation and growth faulting in the Late Cretaceous evolution of the Bight Basin, offshore southern Australia

  • The 1:100,000 series of maps for Palaeoproterozoic rocks of the Leichhardt River Fault Trough and Lawn Hill Platform of northern Australia arguably form the best set of regional geological maps in the country. Since their release in the 1970?s and early 1980?s they have been extensively used in mineral exploration programs in the Mount Isa Inlier. In this region one of the most obvious lithostratigraphic correlations is based on the assumed equivalence of two sandstone bodies, 1) the Torpedo Creek Quartzite and 2) the Warrina Park Quartzite. Each sandbody forms the basal lithostratigraphic unit of its respective Group (McNamara and Mount Isa) and outcrops as prominent ridges of white quartzite, readily traceable on aerial photographs. The distinctive outcrop character, map patterns and defined stratigraphic relationships have resulted in this correlation forming the `linch-pin? of lithostratigraphic subdivision in the region. Sequence stratigraphic analysis of the Warrina Park and Torpedo Creek Quartzites, the underlying Surprise Creek Formation and overlying fine-grained transgressive siliciclastics has identified a series of chronostratigraphically significant surfaces (sequence boundaries, transgressive surfaces and maximum flooding surfaces) that collectively demonstrate major miscorrelations in the current lithostratigraphic subdivisions. The study demonstrates the potential for major errors associated with lithostratigraphic subdivisions based on the assumed equivalence and continuity of sandbodies. In the case of the Mt Isa region the miscorrelations have resulted in major unconformities with up to 20 my of missing rock record remaining unrecognised in many areas. The consequences of such miscorrelations are inadequate and inaccurate reconstructions of basin geometry, stratigraphic architecture and the mis-identification of synsedimentary growth faults. Because these reconstructions form the essential prerequisites for predictive mineral system models, aimed at constraining the evolution and flow of metal-bearing fluids through these sediments, these inadequacies are of fundamental importance to the exploration industry. This scenario is well recognised in the petroleum industry, where significant effort is made to correctly understand sandbody geometry particularly in reservoir settings where continuity is critical to production and reservoir engineering. The paper provides an example of sandbody miscorrelations in the Palaeoproterozoic successions of northern Australia. Issues raised in this paper are of major significance to the mineral exploration industry as well as state geological surveys and universities involved in mapping programs and basin reconstructions.

  • The Bremer Sub-basin on the rifted southwestern continental margin of Australia is a frontier basin in which no wells have been drilled. The petroleum potential of such frontier basins is generally limited to theoretical assessments from seismic data and analogues. However, a series of submarine canyons have incised the Bremer Sub-basin, allowing geological sampling of the upper 2.5 km of the basin succession. Geochemical, petrographic and palaeontological analyses of 136 rock samples recovered from 30 dredge sites, integrated with interpretation from a regional seismic grid, indicate that the Bremer Sub-basin contains a succession of up to 7km of Jurassic to Tertiary age sediments containing the essential petroleum system elements (source, reservoir and seal) to generate and trap hydrocarbons. Source rock analyses indicate Early Cretaceous coaly and lacustrine organic facies have the best oil potential with hydrogen indices (HI) up to 370 mg hydrocarbons/g TOC. Similar fluvio-lacustrine organic facies are recognised sources for oil in the adjacent Perth and eastern Bight basins. Furthermore, the identification of late Early Cretaceous marine anoxic organic facies in the Bremer Sub-basin supports the concept of a local southern Australian margin origin for widespread coastal bitumens termed asphaltites. Berriasian to Hauterivian age strata within the Bremer Sub-basin have the greatest potential to reservoir hydrocarbons, where lacustrine mudstones overlie fluvial sandstones in anticlines and fault block traps. The largest anticline may be capable of trapping up to 500 million barrels of oil in-place (P50 estimate; 900 million barrels P10 estimate).

  • This Record presents a new stratigraphic interpretation of Cretaceous sedimentary rocks encountered in petroleum exploration wells, stratigraphic holes and water bores along the southern Australian coast in Western Australia and South Australia. The Cretaceous succession in these wells is interpreted within the Bight Basin sequence stratigraphic framework, and is correlated with the thicker section farther basinward. The correlation is based on existing and recently commissioned biostratigraphic data, and the interpretation of seismic data on the continental shelf. The onshore wells contain a sedimentary section ranging in age from Valanginian to Campanian, and attributable to the Bronze Whaler, Blue Whale-White Pointer, Tiger and Hammerhead supersequences. The succession reaches a maximum thickness of more than 357 m in the Madura 1 well. The section preserved in these wells records the evolution of depositional environments near the northern margin of the Bight Basin, from areally restricted non-marine deposition in the Early Cretaceous, through increasingly marine, although shallow and anoxic, conditions, to the local development of a small deltaic complex in the Late Cretaceous. Organic-rich non-marine shales of Early Cretaceous age, and Late Cretaceous organic-rich facies of marine affinity have been identified in wells in the study area., providing new information about the nature and extent of potential source rocks in the Bight Basin.