From 1 - 10 / 542
  • This video presents an introduction to the GMRT-AusSeabed project. The project will enable users to create their own seamless seabed maps using AusSeabed datasets. Through a cloud-based platform, users will be able to select, prioritise and merge available datasets together to then grid them at their preferred resolution (data allowing). The project will deliver a prototype platform in June 2022 that will focus on bathymetry data, but will seed future AusSeabed activities.

  • The Leeuwin Current has significant ecological impact on the coastal and marine ecosystem of south-western Australia. This study investigated the spatial and temporal dynamics of the Leeuwin Current using monthly MODIS SST dataset between July 2002 and December 2012. Topographic Position Index layers were derived from the SST data for the mapping of the spatial structure of the Leeuwin Current. The semi-automatic classification process involves segmentation, 'seeds' growing and manual editing. The mapping results enabled us to quantitatively examine the current's spatial and temporal dynamics in structure, strength, cross-shelf movement and chlorophyll a characteristic. It was found that the Leeuwin Current exhibits complex spatial structure, with a number of meanders, offshoots and eddies developed from the current core along its flowing path. The Leeuwin Current has a clear seasonal cycle. During austral winter, the current locates closer to the coast (near shelf break), becomes stronger in strength and has higher chlorophyll a concentrations. While, during austral summer, the current moves offshore, reduces its strength and chlorophyll a concentrations. The Leeuwin Current also has notable inter-annual variation due to ENSO events. In El Niño years the current is likely to reduce strength, move further inshore and increase its chlorophyll a concentrations. The opposite occurs during the La Niña years. In addition, this study also demonstrated that the Leeuwin Current has a significantly positive influence over the regional nutrient characteristics during the winter and autumn seasons. Apart from surface cooling and advection, the Leeuwin Current's sizable cross-shelf movement may be another contributing factor to the seasonal and inter-annual variations of its chlorophyll a concentrations.

  • As part of Australian Government's National Low Emission Coal Initiative (NLECI) and National CO2 Infrastructure Plan (NCIP), Geoscience Australia (GA) has been assessing offshore sedimentary basins for their CO2 storage potential. These studies, scheduled for completion by 30 June 2015, aim to identify potential sites for the geological storage of CO2 and provide pre-competitive information for the development of CO2 transport and storage infrastructure near major emission sources. The basins targeted for these studies are the Bonaparte Basin (Petrel Sub-basin), Browse Basin, Perth Basin (Vlaming Sub-basin) and Gippsland Basin. GA completed a series of marine surveys over the Petrel and Vlaming sub-basins and the Browse Basin during 2012-2013, that acquired 2D reflection seismic, multibeam bathymetry/backscatter and sub-bottom profiling data, and seabed samples and video footages. The datasets have been analysed to inform the assessment of potential CO2 storage capacity and containment for each study area. Integrated interpretation of the seabed, shallow subsurface and deep basin data has assisted the identification of potential fluid migration features that may indicate seal breach and the presence of migration pathways. Data on seabed environments and ecological habitats will provide a baseline for an assessment of the potential impacts of CO2 injection and storage, and associated infrastructure development.

  • The concentration of chlorophyll-a in ocean surface waters is a good indicator of primary productivity. As part of a national-scale analysis of ecosystem processes influencing marine biodiversity, daily MODIS images were processed using NASA's SeaDAS software to generate chlorophyll-a monthly data for the period 2009-2011. Results show that Australian oceans have relatively low surface chlorophyll-a concentrations (average 0.2 mg/m3), with concentrations greater than 0.7 mg/m3 considered to indicate 'high' productivity. On this basis, productivity hotspots are mapped for locations that have 'high' productivity greater than 75% of the time (i.e. 9 out of 12 months). As expected, most productivity hotspots are confined to inner shelf and coastal areas, especially embayments. Key areas include the Great Barrier Reef, Gulf of Carpentaria, Van Diemen Gulf, Joseph Bonaparte Gulf, Kimberley coast, Exmouth Gulf and Shark Bay. Seasonally, the period February to June has larger areas of 'high' productivity. Annually, areas of hotspots decrease from 2009 to 2011. Among the 59 existing and proposed Commonwealth Marine Reserves (CMR), nine have hotspots occupying more than 1% of their area; a result consistent with their largely offshore location. In contrast, 47 out of 128 state/territory Marine Protected Areas (MPAs) which lie in inshore waters have more than 1% of area identified as hotspots. In total, chlorophyll-a hotspots occur in more than 20% (by area) of the state/territory MPAs, compared to less than 0.4% of CMRs. Ongoing analysis will relate these patterns to oceanographic models and biodiversity patterns at regional scales, with a focus on northern Australia.

  • Submarine canyons have been recognised as areas of significant ecological and conservation value. In Australia, 713 canyons were mapped and classified in terms of their geomorphic properties. Many of them are identified as Key Ecological Features (KEFs) and protected by Commonwealth Marine Reserves (CMRs) using expert opinion based on limit physical and ecological information. The effectiveness of these KEFs and CMRs to include ecologically significant submarine canyons as prioritised conservation areas needs to be objectively examined. This study used two local-based spatial statistical techniques, Local Moran's I (LMI) and the Gi* statistic, to identify hotspots of Australian canyons (or unique canyons) for conservation priority. The hotspot analysis identified 29 unique canyons according to their physical attributes that have ecological relevance. Most of these unique physical canyons are distributed on the southern margins. Twenty-four of the 29 canyons are enclosed by the existing KEFs and protected by CMRs to varied extents. In addition, the hotspot analysis identified 79 unique canyons according to their chlorophyll a concentrations, all of which are located in the South-east marine planning region. The findings can be used to update or revise the profile descriptions for some existing KEFs. In future, if the boundaries of these KEFs are deemed necessary to be reviewed, the new information and knowledge could also be used to enhance the conservation priorities of these KEFs.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.