From 1 - 1 / 1
  • Lithospheric structure and composition have direct relevance for our understanding of mineral prospectivity. Aspects of the lithosphere can be imaged using geophysical inversion or analysed from exhumed samples at the surface of the Earth, but it is a challenge to ensure consistency between competing models and datasets. The LitMod platform provides a probabilistic inversion framework that uses geology as the fabric to unify multiple geophysical techniques and incorporates a priori geochemical information. Here, we present results from the first application of LitMod to the Australian continent. We demonstrate the ability to map important geophysical surfaces, and to differentiate between compositional (e.g. metasomatism) and thermal anomalies. We validate the posterior predictions from our inversion against independent studies, and this highlights the robustness of our results. Finally, we discuss recent technological advances in the implementation of LitMod3D_4INV, and how the model can be used to bring together multiple projects within the Exploring for the Future program to image the lithospheric mantle. The implications of this work extend beyond mineral prospectivity, and will ultimately inform our understanding of energy systems, groundwater and seismic hazard. <b>Citation:</b> Haynes, M.W., Fomin, I., Afonso, J.C., Gorbatov, A., Czarnota, K. and Salajegheh, F., 2020. Developing thermochemical models of Australia’s lithosphere. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.