Exploring for the Future
Type of resources
Keywords
Publication year
Service types
Topics
-
The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.
-
Long-period magnetotelluric (MT) data allow geoscientists to investigate the link between mineralisation and lithospheric-scale features and processes. In particular, the highly conductive structures imaged by MT data appear to map the pathways of large-scale palaeo-fluid migration, the identification of which is an important element of several mineral system models. Given the importance of these data, governments and academia have united under the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to collect long-period MT data across the continent on a ~55 km-spaced grid. Here, we use AusLAMP data to demonstrate the MT method as a regional-scale tool to identify and select prospective areas for mineral exploration undercover. We focus on the region between Tennant Creek in the Northern Territory and east of Mount Isa in Queensland. Our results image major conductive structures up to 150 km deep in the lithosphere, such as the Carpentaria Conductivity Anomaly east of Mount Isa. This anomaly is a significant lithospheric-scale conductivity structure that shows spatial correlations with a major suture zone and known iron oxide–copper–gold deposits. Our results also identify similar features in several under-explored areas that are now considered to be prospective for mineral discovery. These observations provide a powerful means of selecting frontier regions for mineral exploration undercover.. <b>Citation:</b> Duan, J., Kyi, D., Jiang, W. and Costelloe, M., 2020. AusLAMP: imaging the Australian lithosphere for resource potential, an example from northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
Waukarlycarly 1 is a stratigraphic well drilled in the southern part of the Canning Basin’s Waukarlycarly Embayment under Geoscience Australia’s Exploring for the Future program in collaboration with the Geological Survey of Western Australia to provide stratigraphic data for this poorly understood tectonic component. The well intersects a thin Cenozoic section, overlying Permian–Carboniferous fluvial clastics and glacial diamictites, with a thick pre-Carboniferous succession (855–2585 mRT) unconformably overlying the Neoproterozoic metasediments. Three informal siliciclastic intervals were defined based on the data from core lithology, well logs, fluid inclusions, chemical and mineral compositions; an Upper Sandstone (855–1348.1 mRT), a Middle Interval (1348.1–2443.4 mRT) and a Lower Sandstone (2443.4 –2585 mRT). The Middle Interval was further divided into six internal zones. Conventional methods were applied to interpret effective porosity, water saturation and elastic properties (Poisson’s ratio and Young’s modulus). Artificial neural network technology was employed on well logs to interpret the total organic carbon (TOC) content, pyrolysis products from the cracking of organic matter (S2), permeability, and mineral compositions. In the Upper Sandstone, average sandstone porosity and permeability are 17.9% and 464.5 mD and, 6.75 % and 10 mD in the Lower Sandstone. The Middle Interval claystone has an average porosity and permeability of 4.17 % and 0.006 mD, and average TOC content and S2 of 0.17 wt% and 0.047 mg HC/g rock with maximum values of 0.66 wt% and 0.46 mg HC/g rock. Average Poisson’s ratio and Young’s modulus of the claystone are 0.154 and 9.81 GPa. Correlations of mineral compositions, petrophysical, geomechanical and geochemical properties of the Middle Interval have been conducted. Young’s modulus and Poisson’s ratio are well correlated with the contents of key minerals, including Quartz, carbonates and TotalClay. Although TOC content is low at Waukarlycarly 1, hydrocarbon generation and migration have occurred elsewhere in the Waukarlycarly Embayment. The helium response just above the Neoproterozoic basement in the FIS profile is not associated with the hydrocarbon responses implying that these fluids have different sources.
-
The petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the McArthur Basin, including the prospective Beetaloo Sub-basin. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarising key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment the hydrocarbon prospectivity of the region.
-
Mineral deposits are the products of lithospheric-scale processes. Imaging the structure and composition of the lithosphere is therefore essential to better understand these systems, and to efficiently target mineral exploration. Seismic techniques have unique sensitivity to velocity variations in the lithosphere and mantle, and are therefore the primary means available for imaging these structures. Here, we present the first stage of Geoscience Australia's passive seismic imaging project (AusArray), developed in the Exploring for the Future program. This includes generation of compressional (P) and shear (S) body-wave tomographic imaging models. Our results, on a continental scale, are broadly consistent with a priori expectations for regional lithospheric structure and the results of previously published studies. However, we also demonstrate the ability to resolve detailed features of the Australian lithospheric mantle underneath the dense seismic deployments of AusArray. Contrasting P- and S-wave velocity trends within the Tennant Creek – Mount Isa region suggest that the lithospheric root may have undergone melt-related alteration. This complements other studies, which point towards high prospectivity for iron oxide–copper–gold mineralisation in the region. <b>Citation: </b>Haynes, M.W., Gorbatov, A., Hejrani, B., Hassan, R., Zhao, J., Zhang, F. and Reading, A.M., 2020. AusArray: imaging the lithospheric mantle using body-wave tomography. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
This report presents groundwater levels results from the Howard East groundwater project in the Northern Territory (NT), conducted as part of Exploring for the Future (EFTF), an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Howard East groundwater project is a collaborative study between Geoscience Australia and he Northern Territory Government’s Department of Environment and Natural Resources (DENR). It focuses on groundwater resources in the Howard East area, NT. This report describes a data release of groundwater levels and salinity information based on measurements collected in monitoring bores during the EFTF project. The full report includes: • A full description of how water levels in metres relative to Australian Height Datum (m AHD; where zero m AHD is an approximation of mean sea level) were calculated from manual dips and electronic data loggers for this project. • A series of tables in Appendix A containing sufficient information for each bore and datalogger file to reproduce the water levels reported in Appendix B and Appendix C. • A series of hydrographs in Appendix B showing how water levels (in m AHD) interpreted from manual dips and datalogger files varied during the EFTF project. • A series of electronic files in Appendix C that include - Data files from dataloggers in CSV file format that can be used with the information contained in this data release to regenerate the water levels shown on hydrographs in Appendix A. - Data files in CSV file format reporting the final water levels used to generate the hydrographs in Appendix B.
-
The Upper Burdekin Chloride Mass Balance Recharge web service depicts the recharge rates have been estimated at borehole locations in the Nulla and McBride basalt provinces. Using rainfall rates, rainfall chemistry and groundwater chemistry, the recharge rates have been estimated through the Chloride Mass Balance approach.
-
The Upper Burdekin Chloride Mass Balance Recharge web service depicts the recharge rates have been estimated at borehole locations in the Nulla and McBride basalt provinces. Using rainfall rates, rainfall chemistry and groundwater chemistry, the recharge rates have been estimated through the Chloride Mass Balance approach.
-
This report presents a summary of the groundwater and surface water hydrochemistry data release from the Daly River project conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater sample collection methods and hydrochemistry and isotope data from monitoring bores in the Daly River project area, Northern Territory (NT). The Daly River project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing bores in the Daly River area. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report and all hydrochemistry data are available for download from the link at right.
-
This report presents a summary of the groundwater and surface water hydrochemistry data release from the Howard East project conducted as part of Exploring for the Future (EFTF) —an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This data release records the groundwater and surface water sample collection methods and hydrochemistry and isotope data from monitoring bores in the Howard East project area, Northern Territory (NT). The Howard East project is a collaborative study between Geoscience Australia and the NT Government. Hydrochemistry and isotope data were collected from existing bores in the Howard East area. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report and all hydrochemistry data are available for download from the link at right.