Environmental Management
Type of resources
Keywords
Publication year
Topics
-
This Northern Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Northern Australian Fractured Rock Province is a hydrogeological entity defined for this study, building upon earlier national-scale hydrogeological research. Australia's geological development was predominantly from west to east, with Archean rocks in the west, Proterozoic rocks in central Australia, and Phanerozoic rocks in the east. The North Australian Craton (NAC) is a significant tectonic element underlying 80% of the Northern Territory and extending to parts of Western Australia and northern Queensland, making up the core of the Northern Australian Fractured Rock Province. The NAC primarily consists of Paleoproterozoic rocks overlying Neoarchean basement. It is surrounded by Proterozoic terranes, including the Musgrave, Warumpi, and Paterson orogens to the south and south-west, the Terra Australis Orogen in the east, and the Western Australian Craton in the west. The Northern Australian Fractured Rock Province includes approximately twelve geological regions of mostly Proterozoic age, such as the Kimberley Basin, Speewah Basin, and Tanami Orogen, among others. Additionally, the province is partially overlain by the Kalkarindji Province, characterized by volcanic rocks. This widespread basaltic province serves as the basement for several significant sedimentary basins in northern Australia, including the Wiso, Ord, Bonaparte, Daly, and Georgina basins. In summary, the Northern Australian Fractured Rock Province is a hydrogeological region defined by combining various Proterozoic geological regions, mainly situated within the North Australian Craton. It is bounded by other Proterozoic terranes and covered in part by the Kalkarindji Province, which consists of volcanic rocks and forms the basement for several key sedimentary basins in northern Australia. Understanding this province is crucial for evaluating the hydrogeological characteristics and geological history of the region.
-
This Southern Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Crustal elements are crustal-scale geological regions primarily based on composite geophysical domains, each of which shows a distinctive pattern of magnetic and gravity anomalies. These elements generally relate to the basement, rather than the sedimentary basins. The South Australian Element comprises the Archean-Mesoproterozoic Gawler Craton and Paleo-Mesoproterozoic Curnamona Province, formed over billions of years through sedimentation, volcanism, magmatism, and metamorphism. The region experienced multiple continental-continent collisions, leading to the formation and breakup of supercontinents like Nuna and Rodinia, along with periods of extensional tectonism. Around 1,400 Ma, both the Gawler Craton and Curnamona Province were cratonised, and during the building of the Rodinia supercontinent (1,300-700 Ma), the present configuration of the region emerged. The area between the Gawler and Curnamona provinces contains Neoproterozoic to Holocene cover, including the Adelaide Superbasin, with the Barossa Complex as its basement, believed to be part of the Kimban Orogen. The breakup of Rodinia in the Neoproterozoic (830-600 Ma) resulted in mafic volcanism and extensional episodes, leading to the formation of the Adelaide Superbasin, characterized by marine rift and sag basins flanking the Gawler Craton and Curnamona Province. During the Mesozoic and Cenozoic, some tectonic structures were rejuvenated, while sedimentary cover obscured much of the now flatter terrain. Metamorphic facies in the region vary, with the Gawler and Curnamona provinces reaching granulite facies, while the Adelaide Superbasin achieved the amphibolite facies. The Gawler Craton contains rocks dating back to approximately 3,150 Ma, while the Curnamona Province contains rocks from 1,720 to 1,550 Ma. These ancient regions have undergone various deformation and metamorphic events but have remained relatively stable since around 1,450 Ma. The Adelaide Superbasin is a large sedimentary system formed during the Neoproterozoic to Cambrian, with distinct provinces. It started as an intracontinental rift system resulting from the breakup of Rodinia and transitioned into a passive margin basin in the southeast and a failed rift in the north. Later uplift and re-instigated rifting led to the deposition of thick Cambrian sediments overlying the Neoproterozoic rocks. Overlying basins include late Palaeozoic to Cenozoic formations, such as the Eromanga Basin and Lake Eyre Basin, which are not part of the assessment region but are adjacent to it.
-
A compilation of thematic summaries of 42 Australian Groundwater Provinces. These consistently compiled 42 summaries comprise the National Hydrogeological Inventory. The layer provides the polygons for each groundwater province in the inventory and thematic information for each province, including location and administration information, demographics, physical geography, surface water, geology, hydrogeology, groundwater, groundwater management and use, environment, land use and industry types and scientific stimulus.
-
This Clarence-Moreton Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The formation of the Clarence-Moreton Basin initiated during the Middle Triassic due to tectonic extension. This was followed by a prolonged period of thermal cooling and relaxation throughout the Late Triassic to the Cretaceous. Deposition of a non-marine sedimentary succession occurred during this time, with the Clarence-Moreton Basin now estimated to contain a sedimentary thickness of up to 4000 m. There were three main depositional centres within the basin, and these are known as the Cecil Plain Sub-basin, Laidley Sub-basin and Logan Sub-basin. The Clarence-Moreton Basin sediments were originally deposited in non-marine environments by predominantly northward flowing rivers in a relatively humid climate. The sedimentary sequences are dominated by a mixed assemblage of sandstone, siltstone, mudstone, conglomerate and coal. Changing environmental conditions due to various tectonic events resulted in deposition of interbedded sequences of fluvial, paludal (swamp) and lacustrine deposits. Within the Clarence-Moreton Basin, coal has been mined primarily from the Jurassic Walloon Coal Measures, including for the existing mines at Commodore and New Acland. However, coal deposits also occur in other units, such as the Grafton Formation, Orara Formation, Bundamba Group, Ipswich Coal Measures, and Nymboida Coal Measures. Overlying the Clarence-Moreton Basin in various locations are Paleogene and Neogene volcanic rocks, such as the Main Range Volcanics and Lamington Volcanics. The thickness of these volcanic rocks is typically several hundred metres, although the maximum thickness of the Main Range Volcanics is about 900 m. Quaternary sediments including alluvial, colluvial and coastal deposits also occur in places above the older rocks of the Clarence-Moreton Basin.
-
This Perth Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Perth Basin is a complex geological region extending along Australia's southwest margin for about 1,300 km. It comprises sub-basins, troughs, terraces, and shelves, hosting sedimentary rocks with coal, oil, gas, and significant groundwater resources. Off the coast of Western Australia, it reaches depths of up to 4,500 m, while its onshore part extends up to 90 km inland. The basin is bounded by the Yilgarn Craton to the east, and the Carnarvon and Bremer basins to the north and south. The basin's history involves two main rifting phases in the Permian and Late Jurassic to Early Cretaceous, creating 15 sub-basins with varying sedimentary thickness due to compartmentalization and fault reactivation. The sedimentary succession mainly comprises fluviatile Permian to Early Cretaceous rocks over Archean and Proterozoic basement blocks. Differences exist between northern and southern sequences, with the south being continental and the north featuring marine deposits. During the Permian, faulting and clastic sedimentation dominated, with marine transgressions in the north and continental rocks in the south. The Triassic saw a similar pattern, with the southern succession being continental and the northern succession showing marine deposits. The Kockatea Shale became a primary hydrocarbon source. The Jurassic period witnessed marine incursions in the central basin, while the Late Jurassic experienced sea level regression and deposition of the Yarragadee Formation. The Cretaceous saw the formation of the Early Cretaceous Parmelia Group due to heavy tectonic activity. The southern basin had a marine transgression leading to the Warnbro Group's deposition with valuable groundwater resources. Post-Cretaceous, Cenozoic deposits covered the basin with varying thicknesses. Overall, the Perth Basin's geological history reveals a diverse sedimentary record with economic and resource significance.
-
This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Nicholson Basin is a Mesoproterozoic sedimentary basin spanning Queensland and the Northern Territory and is bordered by neighbouring provinces and basins. The basin unconformably overlies the Lawn Hill Platform of the Mount Isa Province to the east, is bound by the Warramunga and Davenport provinces to the south-west, the Murphy Province to the north and the McArthur Basin to the north-west. It extends southwards under younger cover sequences. Rock units in the basin are correlated with the Roper Group in the McArthur Basin, forming the 'Roper Superbasin.' The underlying Mount Isa Province contains potential shale gas resources. The basin mainly consists of sandstone- and siltstone-bearing units, including the South Nicholson Group, with a prevailing east to east-northeast structural grain. Mild deformation includes shallowly plunging fold axes and numerous faults along a north-west to south-east shortening direction. Major geological events affecting the South Nicholson Basin region include the formation of the Murphy Province's metamorphic and igneous rocks around 1850 million years ago (Ma). The Mount Isa Province experienced deposition in the Leichhardt Superbasin (1800 to 1750 Ma) and Calvert Superbasin (1725 to 1690 Ma). The Isa Superbasin, with extensional growth faulting in the Carrara Sub-basin (~1640 Ma), deposited sediments from approximately 1670 to 1590 Ma. Subsequently, the South Nicholson Group was deposited around 1500 to 1430 Ma, followed by the Georgina Basin's sedimentation. The basin shows potential for sandstone-type uranium, base metals, iron ore, and petroleum resources, while unconventional shale and tight gas resources remain largely unexplored. The Constance Sandstone holds promise as a petroleum reservoir, and the Mullera Formation and Crow Formation serve as potential seals.
-
Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).
-
This Lake Eyre Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Lake Eyre Basin (LEB) is a vast endorheic basin covering approximately 15% of the Australian continent, spanning about 1.14 million square kilometres. Its development began during the Late Palaeocene due to tectonic subsidence in north-eastern South Australia, resulting in a wide and shallow intra-cratonic basin divided into Tirari and Callabonna Sub-basins by the Birdsville Track Ridge. The depocenter of the LEB has shifted southwards over time. During the Cenozoic era, sediment accumulation was highest near the Queensland-Northern Territory border. The depo-center was in the southern Simpson Desert by the late Neogene, and is currently in Kati Thanda-Lake Eyre, leading to the deposition of various sedimentary formations, which provide a record of climatic and environmental changes from a wetter environment in the Palaeogene to the arid conditions of the present. The LEB is characterized by Cenozoic sediments, including sand dunes and plains in the Simpson, Strezelecki, Tirari, and Strezelecki deserts, mud-rich floodplains of rivers like Cooper, Diamantina, and Georgina, and extensive alluvial deposits in the Bulloo River catchment. The basin's geology comprises rocks from different geological provinces, ranging from Archean Gawler Craton to the Cenozoic Lake Eyre Basin. The Callabonna Sub-basin, confined by the Flinders Ranges to the west, contains formations such as the Eyre and Namba formations, representing fluvial and lacustrine environments. The Cooper Creek Palaeovalley hosts formations like the Glendower, Whitula, Doonbara, and Caldega, and features significant Quaternary sedimentary fill. The Tirari Sub-basin, located on the border regions of three states, contains formations like the Eyre, Etadunna, Mirackina, Mount Sarah Sandstone, Yardinna Claystone, Alberga Limestone, and Simpson Sand. The northwest of Queensland includes smaller Cenozoic basins, likely infilled ancient valleys or remnants of larger basins. The Marion-Noranside Basin has the Marion Formation (fluvial) and Noranside Limestone (lacustrine), while the Austral Downs Basin comprises the Austral Downs Limestone (spring and lacustrine). The Springvale and Old Cork Basins tentatively have Eocene and Miocene ages. Cenozoic palaeovalleys in the Northern Territory are filled with fluvial sands, gravels, lignites, and carbonaceous deposits and are confined by surrounding basins. Overall, the sedimentary sequences in the Lake Eyre Basin provide valuable insights into its geological history, climate shifts, and topographic changes, contributing to our understanding of the region's development over time.
-
This South Australian Gulf and Yorke Cenozoic Basins dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Australian Gulf and Yorke Cenozoic basins consist of eleven separate basins with similar sediments. These relatively small to moderate-sized basins overlies older rocks from the Permian, Cambrian, or Precambrian periods and are often bounded by north-trending faults or basement highs. The largest basins, Torrens, Pirie, and Saint Vincent, share boundaries. The Torrens and Pirie basins are fault-bounded structural depressions linked to the Torrens Hinge Zone, while the Saint Vincent basin is a fault-bounded intra-cratonic graben. Smaller isolated basins include Carribie and Para Wurlie near the Yorke Peninsula, and Willochra and Walloway in the southern Flinders Ranges. The Barossa Basin, Hindmarsh Tiers, Myponga, and Meadows basins are in the Adelaide region. These basins resulted from tectonic movements during the Eocene Australian-Antarctic separation, with many forming in the late Oligocene. Sediment deposition occurred during the Oligocene to Holocene, with various environments influenced by marine transgressions and regressions. The well-studied Saint Vincent Basin contains diverse sediments deposited in fluvial, alluvial, deltaic, swamp, marine, littoral, beach, and colluvial settings, with over 30 major shoreline migrations. Eocene deposition formed fluvio-deltaic lignite and sand deposits, before transitioning to deeper marine settings. The Oligocene and Miocene saw limestone, calcarenite, and clay deposition, overlain by Pliocene marine sands and limestones. The uppermost sequences include interbedded Pliocene to Pleistocene limestone, sand, gravel, and clay, as well as Pleistocene clay with minor sand lenses, and Holocene to modern coastal deposits. The sediment thickness varies from less than 50 m to approximately 600 m, with the Saint Vincent Basin having the most substantial infill. Some basins were previously connected to the Saint Vincent Basin's marine depositional systems but later separated due to tectonic movements.
-
This Bowen Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bowen Basin is part of the Sydney–Gunnedah–Bowen basin system and contains up to 10,000 m of continental and shallow marine sedimentary rocks, including substantial deposits of black coal. The basin's evolution has been influenced by tectonic processes initiated by the New England Orogen, commencing with a phase of mechanical extension, and later evolving to a back-arc setting associated with a convergent plate margin. Three main phases of basin development have been identified; 1) Early Permian: Characterized by mechanical extension, half-graben development, thick volcanic units and fluvio-lacustrine sediments and coal deposits. 2) Mid Permian: A thermal relaxation event led to the deposition of marine and fluvio-deltaic sediments, ending with a regional unconformity. 3) Late Permian and Triassic: Foreland loading created a foreland basin setting with various depositional environments and sediment types, including included fluvial, marginal marine, deltaic and marine sediments along with some coal deposits in the late Permian, and fluvial and lacustrine sediments in the Triassic. Late Permian peat swamps led to the formation of extensive coal seams dominating the Blackwater Group. In the Triassic, fluvial and lacustrine deposition associated with foreland loading formed the Rewan Formation, Clematis Sandstone Group, and Moolayember Formation. The basin is a significant coal-bearing region with over 100 hydrocarbon accumulations, of which about one third are producing fields. The Surat Basin overlies the southern Bowen Basin and contains varied sedimentary assemblages hosting regional-scale aquifer systems. Cenozoic cover to the Bowen Basin includes a variety of sedimentary and volcanic rock units. Palaeogene and Neogene sediments mainly form discontinuous units across the basin. Three of these units are associated with small eponymous Cenozoic basins (the Duaringa, Emerald and Biloela basins). Unnamed sedimentary cover includes Quaternary alluvium, colluvium, lacustrine and estuarine deposits; Palaeogene-Neogene alluvium, sand plains, and duricrusts. There are also various Cenozoic intraplate volcanics across the Bowen Basin, including central volcanic- and lava-field provinces.