From 1 - 2 / 2
  • <div>High purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. High purity quartz deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences is notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296

  • <div>High Purity Silica (HPS) is the principal raw material in the production of silicon used to manufacture high technology products including semiconductors and solar cells. Quartz (SiO2) is the most abundant silica mineral in the Earth’s crust; however, economic deposits of high purity quartz (HPQ; SiO2 >99.995%) are rare. Rapid acceleration towards reaching net zero emissions has seen a parallel increase in demand for the discovery of new HPS deposits for downstream processing. As a part of the Australian Critical Minerals Research and Development Hub, Geoscience Australia is addressing this demand by generating the first mineral systems model and accompanying national scale mineral potential map to help explorers accelerate discovery. Presentation for the 2024 AusIMM Critical Minerals Conference