Towards developing a 3D hydrogeological framework for Australia
Aims:
Groundwater is vital for community water supplies and economic development in Australia. It also supports indigenous cultural values and sustains a range of groundwater dependent ecosystems, including springs and vegetation communities. Geoscience Australia’s regional assessments and basin inventories are investigating Australia’s groundwater systems to improve knowledge of the nation’s groundwater systems under the Exploring for the Future (EFTF) Program. Where applicable, we applied integrated basin analysis workflows to build models of geological and hydrostratigraphic architecture and link them to a nationally consistent chronostratigraphic framework. While the focus of this paper is the Great Artesian Basin (GAB), the overlying Lake Eyre Basin (LEB) and the Upper Darling Floodplain (UDF) region, these datasets and surfaces continue expanding beyond this current study area by linking additional studies using this consistent approach, towards building a national picture of groundwater systems.
Method:
Geoscience Australia continues to refine the chronostratigraphic framework that correlates time equivalent geological units from neighbouring basins and hydrostratigraphy for the GAB, LEB and UDF (Figure 1), infilling key data and knowledge gaps from previous compilations and adding new interpretation. In collaboration with Commonwealth, State and Territory government agencies, we compiled and standardised data from thousands of boreholes, including stratigraphic (Norton & Rollet, 2023; Vizy & Rollet, 2023a) and biostratigraphic picks (Hannaford & Rollet, 2023), 2D and 3D seismic (Szczepaniak et al., 2023) and airborne electromagnetic derived conductivity sections across the study area (McPherson et al., 2022a &b; Wong et al., 2023). We undertook a detailed stratigraphic review of thousands of boreholes with geophysical logs to construct consistent regional transects across the GAB, LEB and UDF (Norton & Rollet, 2023). In addition we applied geological time constraints from hundreds of boreholes with existing and newly interpreted biostratigraphic data (including from legacy palynological preparations from the Geoscience Australia archives where old reports could not be found) (Hannaford & Rollet, 2023). New biostratigraphic data from core samples has been analysed from bores in the Northern Territory, South Australia and Queensland. The biostratigraphic data was calibrated to the most recent biostratigraphic zonation scheme and used to provide geological time constraint to the stratigraphic picks.
Results:
We infilled the stratigraphic correlations along key transects across Queensland, New South Wales, South Australia and the Northern Territory to refine nomenclature and stratigraphic relationships between the Surat, Eromanga and Carpentaria basins, improving chronostratigraphic understanding within the Jurassic‒Cretaceous to Cenozoic units. We extended the GAB geological framework to include the overlying LEB and UDF as well to better resolve the Cenozoic stratigraphy and structure and potential for hydrogeological connectivity. The new data and information fill recognised gaps and refine the previous 3D geological model of the entire GAB and extend it to the LEB and UDF region (Vizy & Rollet, 2023b).
The updated 3D geological and hydrostratigraphic model provides a framework to integrate additional hydrogeological and rock property data. It assists in refining hydraulic relationships between aquifers within the GAB, LEB, UDF and provides a basis for developing more detailed hydrogeological system conceptualisations.
The improved cross-jurisdictional chronostratigraphic understanding supports improvements to the common agreed terminology for Australian hydrogeological units and groundwater provinces between jurisdiction borders
( http://www.bom.gov.au/water/groundwater/naf/). This enables the delivery of geologically and hydrogeologically consistent datasets to inform decision makers and the broader groundwater community in Australia.
This abstract was submitted/presented to the 2023 Australasian Groundwater / New Zealand Hydrological Society (AGC NZHS) Joint Conference ( https://www.hydrologynz.org.nz/events-1/australasian-groundwater-nzhs-joint-conference)
References:
Hannaford, C. and Rollet, N. 2023. Palynological data review of selected boreholes in the Great Artesian, Lake Eyre basins and Upper Darling Floodplain (part 2): Infilling data and knowledge gaps. Record 2023/27. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147173
McPherson, A., Rollet, N., Vizy, J., Kilgour, P. 2022a. Great Artesian Basin eastern recharge area assessment - northern Surat Basin airborne electromagnetic survey interpretation report. RECORD: 2022/017. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2022.017
McPherson, A., Buckerfield, S., Tan, K., Kilgour, P., Symington, N., Ray, A., Buchanan, S. 2022b. Developing (hydro)geological conceptual models to support improved groundwater management. The Upper Darling Floodplain Project, New South Wales. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147055
Norton, C. J. and Rollet, N. 2023. Regional stratigraphic correlation transects across the Great Artesian, Lake Eyre basins and Upper Darling Floodplain region (part 2): Infilling data and knowledge gaps. Record 2023/28. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147243
Szczepaniak, M., Rollet, N., Bradshaw, B, Lund, D., Iwanec, J., Bradey, K., Vizy, J., 2023. Western and central Eromanga and underlying basins seismic interpretation ‒ Data package. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/147900
Vizy, J. & Rollet, N. 2023a. Australian Borehole Stratigraphic Units Compilation (ABSUC) 2023 Version 1.0. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147641
Vizy, J. & Rollet, N., 2023b. 3D geological and hydrogeological surfaces update in the Great Artesian, Lake Eyre basins and Upper Darling Floodplain region (part 2): report and data package. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/148552
Wong, S.C.T., Hegarty, R.A., Pitt, L., Crowe, M.C., Roach, I., Nicoll, M., LeyCooper, Y., Hope, J., Bonnardot, M. 2023. Eastern Resources Corridor Airborne Electromagnetic Interpretation Data Package. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147992
Simple
Identification info
- Date (Creation)
- 2023-07-25T17:11:00
- Date (Publication)
- 2024-02-01T05:44:08
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/148641
Identifier
- Codespace
-
Digital Object Identifier
- Cited responsible party
-
Role Organisation / Individual Name Details Publisher Commonwealth of Australia (Geoscience Australia)
Voice Author Rollet, N.
MEG Internal Contact Author Vizy, J.
MEG Internal Contact Author Norton, C.J.
External Contact Author Hannaford, C.
External Contact Author McPherson, A.
MEG Internal Contact Author Symington, N.
MEG Internal Contact Author Evans, T.
MEG Internal Contact Author Szczepaniak, M.
MEG Internal Contact Author Bradshaw, B.
MEG Internal Contact Author Wilford, J.
MEG Internal Contact Author Wong, S.
MEG Internal Contact Author Nation, E.
External Contact Author Peljo, M.
MEG Internal Contact
- Name
-
Australasian Groundwater / New Zealand Hydrological Society (AGC NZHS) Joint Conference 28 November - 1 December 2023, Auckland NZ
- Purpose
-
Abstract for submission to the 2023 Australasian Groundwater Conference / New Zealand Hydrological Society (28 November-1 December 2023)
- Status
- Completed
- Point of contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Resource provider Minerals, Energy and Groundwater Division
External Contact Point of contact Rollet, N.
MEG Internal Contact
- Spatial representation type
- Topic category
-
- Geoscientific information
Extent
Extent
))
- Maintenance and update frequency
- As needed
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- theme.ANZRC Fields of Research.rdf
-
-
EARTH SCIENCES
-
- Keywords
-
-
EFTF - Exploring for the Future, National Groundwater Systems, Darling-Curnamona-Delamerian, stratigraphy, palynology, airborne electromagnetic data, seismic, Great Artesian Basin, Lake Eyre Basin, Upper Darling Floodplain, Eromanga Basin, Carpentaria Basin, Surat Basin
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
Creative Commons Attribution 4.0 International Licence
- Alternate title
-
CC-BY
- Edition
-
4.0
- Access constraints
- License
- Use constraints
- License
- Other constraints
-
(c) Commonwealth of Australia (Geoscience Australia) 2023
Resource constraints
- Title
-
Australian Government Security Classification System
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice facsimile
- OnLine resource
-
Link to Conference Page
Link to Conference Page
- Distribution format
-
- OnLine resource
-
Link to Abstract (Page 65)
Link to Abstract (Page 65)
- Distribution format
-
- OnLine resource
-
Download Presentation (pdf) [10.0 MB]
Download Presentation (pdf) [10.0 MB]
- Distribution format
-
Resource lineage
- Statement
-
Data integration across MEG EFTF projects with a common geological and hydrogeological framework to map consistently Australian hydrogeological units, as part of the EFTF NGS project.
Metadata constraints
- Title
-
Australian Government Security Classification System
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/ad1f1fff-f23b-485c-93a0-75f7092e545c
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Owner Rollet, N
Geoscience Australia Internal Contact Point of contact Rollet, N.
MEG Internal Contact
Type of resource
- Resource scope
- Document
- Name
-
Conference Abstract
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/148641
- Date info (Creation)
- 2019-04-08T01:55:29
- Date info (Revision)
- 2019-04-08T01:55:29
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- https://pid.geoscience.gov.au/dataset/ga/122551