Authors / CoAuthors
Sanabria, L.A. | Cechet, R.P.
Abstract
A model to assess severe wind hazard using climate-simulated wind speeds have been developed at Geoscience Australia (Sanabria and Cechet, 2010a). The model has a num-ber of advantages over wind hazard calculated from observational data: Firstly the use of climate-simulated data makes it possible to assess wind hazard over a region rather than at a recording station. Secondly climate-simulated data allows wind analysts to calculate wind hazard over a long climatology and, more importantly, to consider the impact of cli-mate change on wind hazard. In this paper we discuss model sensitivity to two IPCC scenarios: scenario B1, a low emissions scenario, and scenario A2, a high emissions scenario. Current and future climate is considered. Currently we deal only with gusts associated with synoptic winds (mid-latitude weather systems) as the climate model only provides mean winds at a resolution of 14 km, which does not resolve thunderstorms. MODEL DESCRIPTION The model involves three computationally processes: - Calculation of return period (RP) for gust wind speed using a statistical model; - Extraction of wind speeds from a high resolution climate model; and - A Monte Carlo method to generate synthetic gust speeds based on a convolution of modelled mean speeds and empirical gust factor measurements.
Product Type
nonGeographicDataset
eCat Id
71328
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationAbstract
- ( Theme )
-
- wind
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2011-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.