Authors / CoAuthors
van Ruth, P. | Tenthorey, E. | Vidal-Gilbert, S.
Abstract
A geomechanical assessment of the Naylor Field, Otway Basin has been undertaken by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) to investigate the possible geomechanical effects of CO2 injection and storage. The study aims to: - further constrain the geomechanical model (in-situ stresses and rock strength data) developed by van Ruth and Rogers (2006), and; - evaluate the risk of fault reactivation and failure of intact rock. The stress regime in the onshore Victorian Otway Basin is: - strike-slip if maximum horizontal stress is calculated using frictional limits, and; - normal if maximum horizontal stress is calculated using the CRC-1 leak-off test. The NW-SE maximum horizontal stress orientation (142ºN) determined from a resistivity image log of the CRC-1 borehole is broadly consistent with previous estimates and verifies a NW-SE maximum horizontal stress orientation in the Otway Basin. The estimated maximum pore pressure increase (Delta-P) which can be sustained within the target reservoir (Waarre Formation Unit C) without brittle deformation (i.e. the formation of a fracture) was estimated to be 10.9 MPa using maximum horizontal stress determined by frictional limits and 14.5 MPa using maximum horizontal stress determined using CRC-1 extended leak-off test data. The maximum pore pressure increase which can be sustained in the seal (Belfast Mudstone) was estimated to be 6.3 MPa using maximum horizontal stress determined by frictional limits and 9.8 MPa using maximum horizontal stress determined using CRC-1 extended leak-off test data. The propensity for fault reactivation was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation propensity by estimating the increase in pore pressure required to cause reactivation (Mildren et al., 2002). Fault reactivation propensity was calculated using two fault strength scenarios; cohesionless faults (C = 0; ? = 0.60) and healed faults (C = 5.4; ?= 0.78). The orientations of faults with high and low reactivation propensity are similar for healed and cohesionless faults. In addition, two methods of determining maximum horizontal stress were used; frictional limits and the CRC-1 extended leak-off test. Fault reactivation analyses differ as a result in terms of which fault orientations have high or low fault reactivation propensity. Fault reactivation propensity was evaluated for three key faults within the Naylor structure with known orientations. The fault segment with highest fault reactivation propensity in the Naylor Field is on the Naylor South Fault near the crest of the Naylor South sub-structure. Therefore, leakage of hydrocarbons from the greater Naylor structure may have occurred through past reactivation of the Naylor South Fault, thus accounting for the pre-production palaeo-column in the Naylor field. The highest reactivation propensity (for optimally-orientated faults) ranges from an estimated pore pressure increase (Delta-P) of 0.0 MPa to 28.6 MPa depending on assumptions made about maximum horizontal stress magnitude and fault strength. Nonetheless, the absolute values of Delta-P presented in this study are subject to large errors due to uncertainties in the geomechanical model. In particular, the maximum horizontal stress and rock strength are poorly constrained.
Product Type
nonGeographicDataset
eCat Id
65623
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- Report
- ( Theme )
-
- carbon dioxide
- ( Theme )
-
- geological sequestration
- ( Theme )
-
- geological storage of CO2
- ( Theme )
-
- risk assessment
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2008-01-21T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.