Authors / CoAuthors
Ayling, B.F. | Lambert, I.B. | Budd, A.R. | Holgate, F.L. | Gerner, E. | Ernst, R.
Abstract
Australia's emergent geothermal energy industry is growing rapidly. So far, 29 companies have applied for geothermal exploration licenses. The majority of these companies are prospecting for Hot Rock geothermal resources for electricity generation, with some companies targeting hydrothermal resources. The Hot Rock model in the Australian context comprises a thick sequence (>3km) of low-thermal conductivity sediments overlying deeper high-heat-producing granites. Until now, the key dataset available to industry to guide their geothermal exploration has been a map of crustal temperature at 5km depth1. Compiled from temperature measurements made in 5,722 petroleum wells across Australia, the map indicates a vast geothermal resource. Additional national-scale geothermal datasets are either incomplete, not publicly accessible, or have not been collected. In August 2006, the Australian Government announced an Energy Security Initiative. It provides $58.9M to Geoscience Australia (the national geoscience and spatial information agency) over five years for an Onshore Energy Security Program (OESP). The OESP aims to better understand Australia's geological potential for onshore energy resources such as petroleum, uranium and geothermal, and includes the acquisition of new seismic, radiometric, heat-flow, magneto-telluric, gravity, magnetic, geochemical and drill-hole data. Providing new data will help attract company exploration in new areas by enhancing the chances of discovery and reducing the risks to investors. Established as part of the OESP, a new Geothermal Energy Project will generate precompetitive geoscientific information for geothermal explorers through two major activities: creating maps of heat distribution across Australia, and developing a geothermal information system. Heat distribution will be mapped in three ways: (1) new heat flow measurements in existing and new drill-holes; (2) a granite source-sediment heat trap map to identify Hot Rock systems; and (3) enhancements to the 5km-temperature-map method of Chopra and Holgate1. The geothermal information system will include thermal conductivity, thermal gradient, geochemistry, density, and heat production amongst other data types. The Australian Government is also facilitating and funding the preparation of a Geothermal Industry Development Framework, which is being lead by the Department of Industry, Tourism and Resources. The Development Framework aims to support the growth of Australia's geothermal industry by identifying opportunities and impediments to the industry's growth, and developing strategies to ensure that technical, economic and regulatory obstacles are tackled in a coordinated way. 1 Chopra, P. and Holgate, F., (2005) A GIS analysis of temperature in the Australian crust, Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005.
Product Type
nonGeographicDataset
eCat Id
65393
Contact for the resource
Custodian
Owner
Custodian
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External PublicationAbstract
- ( Theme )
-
- geothermal
- ( Theme )
-
- Hot Rocks
-
- AU
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_External
Publication Date
2007-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
[-44.0, -10.0, 110.0, 154.0]
Reference System
Spatial Resolution
Service Information
Associations
Source Information
Source data not available.