Authors / CoAuthors
Abstract
This Sydney Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Sydney Basin, part of the Sydney–Gunnedah–Bowen basin system, consists of rocks dating from the Late Carboniferous to Middle Triassic periods. The basin's formation began with extensional rifting during the Late Carboniferous and Early Permian, leading to the creation of north-oriented half-grabens along Australia's eastern coast. A period of thermal relaxation in the mid Permian caused subsidence in the Bowen–Gunnedah–Sydney basin system, followed by thrusting of the New England Orogen from the Late Permian through the Triassic, forming a foreland basin. Deposition in the basin occurred in shallow marine, alluvial, and deltaic environments, resulting in a stratigraphic succession with syn-depositional folds and faults, mostly trending north to north-east. The Lapstone Monocline and Kurrajong Fault separate the Blue Mountains in the west from the Cumberland Plain in the central part of the basin. The Sydney Basin contains widespread coal deposits classified into geographic coalfield areas, including the Southern, Central, Western, Newcastle, and Hunter coalfields. These coalfields are primarily hosted within late Permian strata consisting of interbedded sandstone, coal, siltstone, and claystone units. The coal-bearing formations are grouped based on sub-basins, namely the Illawarra, Tomago, Newcastle, and Wittingham coal measures, underlain by volcanic and marine sedimentary rocks. Deposition within the basin ceased during the Triassic, and post-depositional igneous intrusions (commonly of Jurassic age) formed sills and laccoliths in various parts of the basin. The maximum burial depths for the basin's strata occurred during the early Cretaceous, reaching around 2,000 to 3,000 metres. Subsequent tectonic activity associated with the Tasman Rift extension in the Late Cretaceous and compressional events associated with the convergence between Australia and Indonesia in the Neogene led to uplift and erosion across the basin. These processes have allowed modern depositional environments to create small overlying sedimentary basins within major river valleys and estuaries, along the coast and offshore, and in several topographic depressions such as the Penrith, Fairfield and Botany basins in the area of the Cumberland Plain.
Product Type
document
eCat Id
148750
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
- Contact instructions
- MEG
Resource provider
Digital Object Identifier
Keywords
- theme.ANZRC Fields of Research.rdf
-
- Land Use and Environmental PlanningENVIRONMENTAL SCIENCESEnvironmental ManagementPHYSICAL GEOGRAPHY AND ENVIRONMENTAL GEOSCIENCEBasin AnalysisEARTH SCIENCESSedimentologyECOLOGYHydrogeologyStratigraphy (incl. Biostratigraphy and Sequence Stratigraphy)GEOLOGY
- ( Project )
-
- National Groundwater Sytems
- ( Theme )
-
- Groundwater
- ( Theme )
-
- Exploring for the Future
- ( Theme )
-
- National Hydrogeological Inventory
-
- Published_External
Publication Date
2023-09-28T07:21:34
Creation Date
Security Constraints
Legal Constraints
Status
completed
Purpose
A thematic summary of the Sydney Basin. Part of a compendium of consistently compiled summaries that comprise the National Hydrogeological Inventory
Maintenance Information
asNeeded
Topic Category
geoscientificInformation inlandWaters environment
Series Information
Lineage
This document for the National Hydrogeological Inventory was created through the compilation and analysis of various national geospatial datasets and a range of supporting scientific and technical literature. In most cases, the spatial boundary (polygon) for the region was sourced from the Geoscience Australia Geological Provinces 2018 dataset. The geospatial data reported for the region of interest were selected by spatial queries of the region's polygon using Geographic Information System (GIS) applications. A variety of national-scale datasets were assessed for each region, with these data relevant to the study of groundwater, hydrogeology and related social, cultural or environmental characteristics. These data are published by various organisations (mostly Australian Government entities) and include fundamental Australian datasets such as the National Groundwater Information System (NGIS), National Aquifer Framework, Atlas of Groundwater Dependent Ecosystems and the Collaborative Australian Protected Areas Database (CAPAD). A complete list of all data used to develop the National Hydrogeological Inventory, and the various data processing and analysis methods used, will be released as part of a future Geoscience Australia publication focused on the hydrogeological inventory methodology. The document also contains written summary information about the geology, hydrogeology and related features of the region of interest. These narrative summaries were compiled by Geoscience Australia researchers based on literature review and analysis of a range of scientific and technical publications about the region. The reports use similar document templates to ensure the consistency of information provided across the entire Australian continent.
Parent Information
National Hydrogeology Inventory
UUID - 77a96e76-a39e-483d-976b-4137a79141f8,
eCat ID - 148897
Extents
[-35.6843, -31.6782, 149.4812, 151.995]
Reference System
Spatial Resolution
Service Information
Associations
Source Information