Authors / CoAuthors
Walker, A.T. | McInnes, B.I.A. | de Caritat, P.
Abstract
<div>Indicator minerals are those minerals that indicate the presence of a specific mineral deposit, alteration or lithology[1]. Their utility to the exploration industry has been demonstrated in a range of environments and across multiple deposit types including Cu-Au porphyry[2], Cu-Zn-Pb-Ag VMS[3] and Ni-Cu-PGE[4]. Recent developments in the field of SEM-EDS analysis have enabled the rapid quantitative identification of indicator minerals during regional sampling campaigns[4,5].</div><div>Despite the demonstrated utility of indicator minerals for diamond and base metal exploration in Canada, Russia and Africa, there are relatively few case studies published from Australian deposits. We present the results of an indicator mineral case study over the Julimar exploration project located 90 km NE of Perth. The Gonneville Ni-Cu-PGE deposit, discovered by Chalice Mining in 2020, is hosted within a ~30 km long belt of 2670 Ma ultramafic intrusions within the western margin of the Yilgarn Craton[6].</div><div>Stream sediments collected from drainage channels around the Gonneville deposit were analysed by quantitative mineralogy techniques to determine if a unique indicator mineral footprint exists there. Samples were processed and analysed for heavy minerals using a workflow developed for the Curtin University-Geoscience Australia Heavy Mineral Map of Australia project[7]. Results indicate elevated abundances of indicator minerals associated with ultramafic/mafic magmatism and Ni-sulfide mineralisation in the drainages within the Julimar project area, including pyrrhotite, pentlandite, pyrite and chromite. We conclude that indicator mineral studies using automated mineralogy are powerful, yet currently underutilised, tools for mineral exploration in Australian environments.</div><div>[1]McClenaghan, 2005. https://doi.org/10.1144/1467-7873/03-066 </div><div>[2]Hashmi et al., 2015. https://doi.org/10.1144/geochem2014-310 </div><div>[3]Lougheed et al., 2020. https://doi.org/10.3390/min10040310 </div><div>[4]McClenaghan & Cabri, 2011. https://doi.org/10.1144/1467-7873/10-IM-026 </div><div>[5]Porter et al., 2020. https://doi.org/10.1016/j.oregeorev.2020.103406 </div><div>[6]Lu et al., 2021. http://dx.doi.org/10.13140/RG.2.2.35768.47367 </div><div>[7]Caritat et al., 2022. https://doi.org/10.3390/min12080961 </div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)
Product Type
document
eCat Id
147122
Contact for the resource
Resource provider
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
- Contact instructions
- MEG
Keywords
- ( Project )
-
- EFTF – Exploring for the Future
- ( Project )
-
- Heavy Mineral Map of Australia
-
- Heavy minerals
-
- Exploration
-
- Validation
- theme.ANZRC Fields of Research.rdf
-
- Exploration GeochemistryMineralogy and Crystallography
-
- Published_External
Publication Date
2023-06-14T07:12:32
Creation Date
2022-08-10T02:00:00
Security Constraints
Legal Constraints
Status
completed
Purpose
Abstract to Australian Exploration Geoscience Conference 2023, Brisbane, 13-18 Mar 2023 - https://2023.aegc.com.au/
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
Australian Exploration Geoscience Conference 13-18 March 2023 Brisbane Qld
Lineage
<div>Validation case study for Heavy Mineral Map of Australia project</div>
Parent Information
Extents
[-32.00, -31.00, 116.80, 115.80]
Reference System
Spatial Resolution
Service Information
Associations
Source Information