• Product catalogue
  •  
  •  
  •  

Reconnaissance study of organic-walled microfossils from Barnicarndy 1, Barnicarndy Graben, Canning Basin, Western Australia

The Exploring for the Future (EFTF) program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. Geoscience Australia’s EFTF Energy program is aimed at improving the understanding of the petroleum resource potential of Australia. A key to understanding resource potential and basin evolution is a reliable time frame to correlate rock units. This palynological reconnaissance study focusses on the acid-resistant organic-walled microfossils (or palynomorphs) recovered from 42 samples taken within the fully cored Lower Ordovician Nambeet Formation (1354.80–2435.04 mRT) in the Barnicarndy 1 stratigraphic well, located in the Barnicarndy Graben, Canning Basin. The lack of palynomorph recovery from the Barnicarndy Formation, Yapukarninjarra Formation, and Neoproterozoic Yeneena Basin, also intersected in this well, means that the age of those units remain undated using micropalaeontological methods. The purpose of this study is to assess the yield and preservation of recovered palynomorphs, and determine their utility for regional, and international, correlation of the Lower Ordovician sedimentary section. Although the total organic matter content of the sampled Lower Ordovician core is typically low (average ≤0.2 wt%), reflecting sediment deposition in an oxidising, open marine environment, a diverse suite of palynomorphs has been identified and includes: acritarchs (of probable algal origin); other algal microfossils (including green algae, or prasinophytes); probable cyanobacteria; cryptospores (derived from the earliest land plants); graptolites and chitinozoans (both from extinct marine groups); scolecodonts (detached elements of worm jaws); and organic-walled tubes, some of which are of either probable fungal or cyanobacterial origin. Digital images accompany this record and include examples of all of these aforementioned microfossils. Microfossil yield per sample is, mostly, low; and preservation ranges from poor, where specimens are either fragmentary and/or distorted by pyrite crystal growth, to good; and commonly both preservation states occur together within the same sample. As with the admixture of preservation states per sample, palynomorph colour, typically used as an indicator of thermal maturity of organic matter, commonly ranges from thermally mature (brown) to over mature (black), often within the same Lower Ordovician core sample. This is tempered by the fact that these observations are based, mostly, on oxidised kerogen preparations, but, the relative maturity indicators remain valid.

The occurrence of acritarchs assigned to the Rhopaliophora pilata–R. palmata complex, together with Athabascaella playfordii, and Aryballomorpha grootaertii, allows correlation with assemblages previously recovered from the Nambeet Formation intersected in two petroleum exploration wells in the Canning Basin (Samphire Marsh 1, type section; and Acacia 2). These species also occur globally, with A. grootaertii recovered from sedimentary rocks in southern China and Canada that have been independently dated as Early Ordovician, late Tremadocian–early Floian (about 475–482 Ma). Conodont faunas from cores in Barnicarndy 1 record the same (late Tremadocian–early Floian) age, which enhances the utility of A. grootaertii for age dating. The dates also demonstrate that the Barnicarndy 1 well intersects some of the oldest Paleozoic sedimentary rocks in the Canning Basin.

There are compositional differences between the palynological assemblages from the younger Samphire Marsh Member and underlying Fly Flat Member of the Nambeet Formation which, despite difficulties in sample processing, are genuine and reflect changes in the depositional environment. Most obvious is the record of Gloeocapsomorpha prisca and ?Eomerismopedia maureeniae, both of probable cyanobacterial affinity, with in situ occurrences in the Lower Ordovician Samphire Marsh Member. Earlier studies suggested that G. prisca was confined to younger (Middle) Ordovician palynological assemblages in the Canning Basin, and its common abundance was used as a biozone marker, but the occurrences reported here and in unpublished studies, have shown that this is no longer applicable. In younger Ordovician formations in the Canning Basin (notably the upper Goldwyer Formation), and globally, G. prisca is an important organism contributing to the hydrocarbon potential of Paleozoic marine source rocks. If present in greater abundance elsewhere in the basin, it could increase the petroleum prospectivity of the Nambeet Formation. A distinctively shaped acritarch, of probable algal origin, assigned to the genus Dactylofusa is restricted to an assemblage from the Fly Flat Member, and may be useful for future basinal biozone correlation.

Most samples from the Samphire Marsh Member contain early land-plant spores, of probable bryophyte affinity, that sometimes occur together with irregularly-shaped spore clusters, likely derived from aeroterrestrial charophyte algae; both of which are collectively known as cryptospores. In addition, Grododowon orthagonalis, superficially similar to E. maureeniae and recorded in some samples from the Samphire Marsh Member, is also considered to be of charophyte algal origin. The cryptospores include the species Dyadospora murusattenuata, Tetraplanarisporites sp., and Laevolancis divellomedium. Collectively, these cryptospores are important as they herald the first emergence of plants onto wetlands during the Early Ordovician; and being of late Tremadocian–early Floian age, they are amongst the oldest land-plant spores known in Australia and globally. The record of cryptospores from Barnicarndy 1 enhances those recently reported from the Nambeet Formation in Samphire Marsh 1, and from the lower Goldwyer Formation in Theia 1. Locally, the cryptospore record demonstrates a supply of terrestrial material into the marine environment during deposition of the Samphire Marsh Member. Globally, records of these cryptospores contribute to the understanding of the evolution and geographic distribution of the earliest land flora.

Inevitably, there are microfossils found in this study that could be described as new species, and a detailed systematic study of all fossil groups is recommended to realise their utility for zonal correlation and age dating. The palynological data presented here provide complementary information to the conodont age dating, organic petrological, and organic geochemical studies conducted on the Barnicarndy 1 core. Collectively, these studies contribute to a better understanding of the depositional history and hydrocarbon prospectivity of the Canning Basin.

Simple

Identification info

Date (Creation)
2021-05-11
Date (Publication)
2022-04-20T08:19:14
Citation identifier
Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/144560

Citation identifier
Digital Object Identifier/http://dx.doi.org/10.11636/Record.2021.040

Cited responsible party
Role Organisation / Individual Name Details
Author

Foster, C.B.

External Contact
Author

Edwards, D.S.

External Contact
Author

Long, I.

MEG Internal Contact
Name

Record

Issue identification

RECORD 2021/040

Purpose

To define the age of the cored section in Barnicarndy 1 using acritarch biozonation

Status
Completed
Point of contact
Role Organisation / Individual Name Details
Point of contact

Commonwealth of Australia (Geoscience Australia)

Voice
Point of contact

Edwards, D.

MEG Internal Contact
Resource provider

Minerals, Energy and Groundwater Division

External Contact
Spatial representation type
Topic category
  • Geoscientific information

Extent

N
S
E
W


Temporal extent

Time period
2020-12-12 2022-03-18
Maintenance and update frequency
As needed

Resource format

Title

Product data repository: Various Formats

Website

Data Store directory containing the digital product files

Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes

theme.ANZRC Fields of Research.rdf
  • Earth Sciences not elsewhere classified

  • EARTH SCIENCES

Discipline
  • Palynology

Place
  • Barnicarndy 1

Place
  • Canning Basin

Temporal
  • Nambeet Formation

Sub-Topic Category
  • acritarchs

Sub-Topic Category
  • cyanobacteria

Sub-Topic Category
  • Gloeocapsomorpha prisca

Sub-Topic Category
  • Eomerismopedia maureeniae

Sub-Topic Category
  • cryptospores

Temporal
  • Early Ordovician (late Tremadocian–early Floian)

Theme
  • evolution of first land plants

Project
  • Exploring for the Future

Keywords
  • Published_External

Resource constraints

Title

Creative Commons Attribution 4.0 International Licence

Alternate title

CC-BY

Edition

4.0

Website

http://creativecommons.org/licenses/

Access constraints
License
Use constraints
License

Resource constraints

Title

Australian Government Security ClassificationSystem

Edition date
2018-11-01T00:00:00
Website

https://www.protectivesecurity.gov.au/Pages/default.aspx

Classification
Unclassified
Language
English
Character encoding
UTF8

Distribution Information

Distributor contact
Role Organisation / Individual Name Details
Distributor

Commonwealth of Australia (Geoscience Australia)

Voice
OnLine resource

Download the Record (pdf) [3.7 MB]

Download the Record (pdf) [3.7 MB]

Distribution format
  • pdf

OnLine resource

Download Appendix A [337.4 MB]

Download Appendix A [337.4 MB]

Distribution format
  • File decompression technique

    unzip

OnLine resource

Download Appendix B [1.8 GB]

Download Appendix B [1.8 GB]

Distribution format
  • File decompression technique

    unzip

Resource lineage

Statement

The determination of acid-resistant, organic-walled microfossils present in core from the Barnicarndy 1 stratigraphic well undertaken by Geoscience Australia in collaboration with ANU.

Metadata constraints

Title

Australian Government Security Classification System

Edition date
2018-11-01T00:00:00
Website

https://www.protectivesecurity.gov.au/Pages/default.aspx

Classification
Unclassified

Metadata

Metadata identifier
urn:uuid/4b072cff-c85a-4cee-9006-97c506245e5f

Title

GeoNetwork UUID

Language
English
Character encoding
UTF8
Contact
Role Organisation / Individual Name Details
Point of contact

Commonwealth of Australia (Geoscience Australia)

Voice
Point of contact

Edwards, D.

MEG Internal Contact

Type of resource

Resource scope
Document
Name

GA Publication: GA Record

Alternative metadata reference

Title

Geoscience Australia - short identifier for metadata record with

uuid

Citation identifier
eCatId/144560

Metadata linkage

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/4b072cff-c85a-4cee-9006-97c506245e5f

Date info (Creation)
2020-12-10T22:26:02
Date info (Revision)
2020-12-10T22:26:02

Metadata standard

Title

AU/NZS ISO 19115-1:2014

Metadata standard

Title

ISO 19115-1:2014

Metadata standard

Title

ISO 19115-3

Title

Geoscience Australia Community Metadata Profile of ISO 19115-1:2014

Edition

Version 2.0, September 2018

Citation identifier
https://pid.geoscience.gov.au/dataset/ga/122551

 
 

Spatial extent

N
S
E
W


Keywords

Early Ordovician (late Tremadocian–early Floian) Eomerismopedia maureeniae Exploring for the Future Gloeocapsomorpha prisca Nambeet Formation Palynology acritarchs cryptospores cyanobacteria evolution of first land plants
theme.ANZRC Fields of Research.rdf
EARTH SCIENCES Earth Sciences not elsewhere classified

Provided by

Access to the portal
Read here the full details and access to the data.

Associated resources

Not available


  •  
  •  
  •