Authors / CoAuthors
Huang, Z. | Wang, X.
Abstract
Coast upwelling is important for marine ecosystems and economic, because of its elevated primary and secondary productivity and large fish catch. This study developed a scale-independent and semi-automatic image processing technique to map the upwelling areas along the 4500 km long south-eastern coast of Australia from 14-year monthly MODIS SST data. The results show that there is significant spatial variability in the mapped upwelling areas, month to month, season to season and year to year. There is also strong temporal (month to month, seasonal and inter-annual) variability of the upwelling characteristics in area of influence, SST anomaly, chlorophyll-a concentrations and upwelling speed. This study identifies two persistent upwelling systems, the NSW system along the coast of the New South Wales and the WVIC/SA system along the coast of western Victoria and adjacent South Australia. The NSW coastal upwelling system occurs more or less continuously from austral spring to autumn. The WVIC/SA coastal upwelling system is a seasonal upwelling system occurred in the austral summer. The NSW coastal upwelling system has a stronger upwelling intensity than the WVIC/SA system, in terms of area of influence, SST anomaly, chlorophyll-a concentrations and upwelling speed. We believe that the NSW coastal upwelling system, especially the northern and central parts, is mainly driven by the EAC and its eddies; while, the WVIC/SA coastal upwelling is a typical wind-driven system. In addition, the results indicate that the ENSO events are likely to have a moderate impact on both the NSW and the WVIC/SA coastal upwelling systems. The El Nino (La Nina) events tend to strength (weaken) upwelling intensity. <b>Citation:</b> Zhi Huang, Xiao Hua Wang, Mapping the spatial and temporal variability of the upwelling systems of the Australian south-eastern coast using 14-year of MODIS data, <i>Remote Sensing of Environment</i>, Volume 227, 2019, Pages 90-109, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2019.04.002
Product Type
document
eCat Id
120136
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Resource provider
Point of contact
- Contact instructions
- Place and Communities
Keywords
- theme.ANZRC Fields of Research.rdf
-
- EARTH SCIENCES
- ( Feature type )
-
- upwelling
- ( Platform )
-
- MODIS SST
- ( Place )
-
- South-eastern Australia
-
- East Australian current
-
- wind
-
- ENSO
-
- El Nino
-
- La Nina
-
- Published_External
Publication Date
2023-11-01T05:47:55
Creation Date
2018-04-24T10:30:00
Security Constraints
Classification - unclassified
Legal Constraints
Status
completed
Purpose
Article submitted to Remote Sensing of Environment journal
Maintenance Information
asNeeded
Topic Category
oceans
Series Information
Remote Sensing of Environment Volume 227, 15 June 2019
Lineage
This study was undertaken for the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Program. The paper is published. Citation: Huang, Z., Wang, X.H., 2019. Mapping the spatial and temporal variability of the upwelling systems of the Australian south-eastern coast using 14-year of MODIS data, Remote Sensing of Environment, 227, 90-109.
Parent Information
Extents
[-54.75, -9.2402, 112.92, 159.11]
Reference System
Spatial Resolution
Service Information
Associations
Source Information