Authors / CoAuthors
Krause, C. | Arthur, C. | Bruyere, C.
Abstract
Tropical cyclones present a tangible risk to Australia’s tropical coastal communities, however extratropical transition (ETT) of these storms can result in significant impacts in mid-latitude regions as well. Tropical systems are driven by latent heat release in the inner core of the cyclone. A fully tropical system is highly axisymmetric; with a warm-cored vortex that is readily represented by a simple radial profile (wind speed is a function of distance from the centre in all directions). Extratropical cyclones on the other hand are driven by strong thermal gradients and as a result have a highly asymmetric wind field that cannot be as easily parameterised for use in stochastic models. In order to accurately model the risk of these transitioning storms on communities such as Perth, the wind field of these storms needs to be parameterised for inclusion in stochastic models. These models allow large numbers of storms to be quickly simulated for use in risk modelling applications. Some authors have attempted to develop parameterisations of these wind fields, with some recent success (Loridan et al. 2015), however an implementation for the Australian region has not yet been developed. Geoscience Australia currently undertakes tropical cyclone risk assessments using a parameterised, 2D stochastic model called the Tropical Cyclone Risk Model (TCRM). TCRM uses parameterised wind fields to allow quick generation of thousands of tropical cyclones in order to develop a probabilistic understanding of tropical cyclone risk for Australia. At present, this model is not capable of simulating tropical cyclones undergoing ETT as a parameterisation of the wind field of these storms around Australia is not available. This work aims to explore ETT around Australia using a 3D, dynamical numerical weather prediction model with the ultimate goal of developing a parameterised wind field, suitable for inclusion in TCRM. This would allow risk assessments for these storms to be undertaken, and improve our understanding of the potential impact of such an event on large urban areas, such as Geraldton or Perth. A modified version of the Weather Research and Forecast (WRF) model (Hybrid WRF) was used to simulate a number of hybrid idealised tropical cyclones, and steer them to undergo ETT. Hybrid WRF was developed to facilitate control over the track and location of landfall of a tropical cyclone, by introducing a steering flow to the boundary conditions of the model run. This method was used to steer a number of idealised tropical cyclones from off the northwest coast of Western Australia, south towards Perth, with the intent to force them to undergo ETT. Surface wind fields and other environmental characteristics (minimum pressure, latitude, thermal wind components, geopotential thickness and others) were analysed to determine the phase of ETT. This case study is the first example of Hybrid WRF being used to examine ETT, and while the steering flow did move the tropical cyclones into the extratropics as intended, only one storm was observed to undergo ETT. Further development of the code for Hybrid WRF is underway, with improvements in the initial and boundary conditions identified as a means to improve the representativeness of these experiments. Based on these simulated events, we intend to develop time-evolving, storm-centred wind fields, as well as statistics on cyclone phase space parameters that can be used to determine the stage of transition to be used in a future stochastic-parametric model of tropical cyclones. Abstract submitted to/presented at the 22nd International Congress on Modelling and Simulation 2017 (MODSIM2017) - https://www.mssanz.org.au/modsim2017/
Product Type
document
eCat Id
111961
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Resource provider
Point of contact
- Contact instructions
- Space Division
Keywords
- theme.ANZRC Fields of Research.rdf
-
- EARTH SCIENCES
-
- hazard
-
- parametric model
-
- risk
-
- tropical cyclone
-
- Published_External
Publication Date
2024-02-22T00:34:50
Creation Date
2017-06-21T00:00:00
Security Constraints
Classification - unclassified
Legal Constraints
Status
completed
Purpose
Short paper prepared for the MODSIM conference, 2017.
Maintenance Information
notPlanned
Topic Category
climatologyMeteorologyAtmosphere
Series Information
22nd International Congress on Modelling and Simulation (MODSIM2017) 3 to 8 December 2017 Hobart, Tas
Lineage
Conference abstract produced based on work carried out during a graduate project in 2016.
Parent Information
Extents
[-54.75, -9.2402, 112.92, 159.11]
Reference System
Spatial Resolution
Service Information
Associations
Source Information