From 1 - 5 / 5
  • Effective disaster risk reduction is founded on knowledge of the underlying risk. While methods and tools for assessing risk from specific hazards or to individual assets are generally well developed, our ability to holistically assess risk to a community across a range of hazards and elements at risk remains limited. Developing a holistic view of risk requires interdisciplinary collaboration amongst a wide range of hazard scientists, engineers and social scientists, as well as engagement of a range of stakeholders. This paper explores these challenges and explores some of the common and contrasting issues sampled from a range of applications addressing earthquake, tsunami, volcano, severe wind, flood, and sea-level rise from projects in Australia, Indonesia and the Philippines. Key issues range from the availability of appropriate risk assessment tools and data, to the ability of communities to implement appropriate risk reduction measures. Quantifying risk requires information on the hazard, the exposure and the vulnerability. Often the knowledge of the hazard is reasonably well constrained, but exposure information (e.g., people and their assets) and measures of vulnerability (i.e., susceptibility to injury or damage) are inconsistent or unavailable. In order to fill these gaps, Geoscience Australia has developed computational models and tools which are open and freely available. As the knowledge gaps become smaller, the need is growing to go beyond the quantification of risk to the provision of tools to aid in selecting the most appropriate risk reduction strategies (e.g., evacuation plans, building retrofits, insurance, or land use) to build community resilience.

  • There are a number of factors which influence the direct consequence of flooding. The most important are depth of inundation, velocity, duration of inundation and water quality. Though computer modelling techniques exist that can provide an estimate of these variables, this information is seldom used to estimate the impact of flooding on a community. This work describes the first step to improve this situation using data collected for the Swan River system in Perth, Western Australia. Here, it is shown that residential losses are underestimated when stage-damage functions or the velocity-stage-damage functions are used in isolation. This is because the functions are either limited to assessing partial damage or structural failure resulting from the movement of a house from its foundations. This demonstrates the need to use a combination of techniques to assess the direct economic impact of flooding.

  • The flood risk in many urban catchments is poorly understood. Legacy stormwater infrastructure is often substandard and anticipated climate change induced sea level rise and increased rainfall intensity will typically exacerbate present risk. In a Department of Climate Change and Energy Efficiency (DCCEE) funded collaboration between Geoscience Australia (GA) and the City of Sydney (CoS), the impacts on the Alexandra Canal catchment have been studied. This work has built upon detailed flood hazard analyses by Cardno commissioned by the CoS and has entailed the development of exposure and vulnerability information. Significantly, the case study has highlighted the value of robust exposure attributes and vulnerability models in the development of flood risk knowledge. The paper describes how vulnerability knowledge developed following the 2011 Brisbane floods to include key building types found in the inner suburb of Sydney. It also describes the systematic field capture of building exposure information in the catchment area and its categorisation into 19 generic building types. The assessment of ground floor heights using the Field Data Analysis Tool (FiDAT) developed at Geoscience Australia is also presented. The selected hazard scenario was a 100 year ARI event with 20% increased rainfall intensity accompanied by a 0.55m sea level rise in Botany Bay. The impact from the selected scenario was assessed in terms of monetary loss for four combinations of vulnerability model suite (GA and NSW Government) and floor height attribution method (assumed 0.15m uniformly and evaluated from LiDAR and street view imagery). It was observed that the total loss is higher in the case of assumed floor heights compared to FiDAT processed floor heights as the former failed to capture increased floor heights for newer construction. However, the loss is lower when only two vulnerability models developed by NSW Government are applied for the entire building stock in the region as two models could not reliably represent the whole building stock.

  • The cost of landslide is underestimated in Australia because their impact and loss are not readily reported or captured. There is no reliable source of data which highlights landslide cost to communities and explains who currently pays for the hazard and how much costs are. The aim of this document is to investigate and analyse landslide costs within a Local Government Area (LGA) in order to highlight the varied landslide associated costs met by the local government, state traffic and rail authorities and the public. It is anticipated this may assist in developing a baseline awareness of the range of landslide costs that are experienced at a local level in Australia. Initial estimates in this study indicate that cumulative costs associated with some landslide sites are well beyond the budget capacity of a local government to manage. Furthermore, unplanned remediation works can significantly disrupt the budget for planned mitigation works over a number of years. Landslide costs also continue to be absorbed directly by individual property owners as well as by infrastructure authorities and local governments. This is a marked distinction from how disaster costs which arise from other natural hazard events, such as flood, bushfire, cyclone and earthquake are absorbed at a local level. It was found that many generic natural hazard cost models are inappropriate for determining landslide costs because of the differences in the types of landslide movement and damage. Further work is recommended to develop a cost data model suitable for capturing consistent landslide cost data. Better quantification of landslide cost is essential to allow for comparisons to be made with other natural hazard events at appropriate levels. This may allow for more informed policy development and decision making across all levels.

  • The Swan River is the main river through Perth, the capital city of Western Australia. Direct tangible economic losses to residential dwellings in Perth was based on hydraulic modelling using the one dimensional unsteady flow model HEC-RAS, geographical information systems, a building exposure database and synthetic stage-damage curves. Eight flood scenarios ranging from the 10 year average recurrence interval (ARI) to the 2000 year ARI event were examined. The combined structure and contents flood losses ranged from A$17 million to A$659 million for insured structures and A$14 million to A$583 million for uninsured structures. This equates to an average annual damage of A$9.6 million and A$7.9 million respectively. The results reinforce the need to consider a wide range of varying magnitude flood events when assessing losses due to the temporal and spatial variation between flood scenarios.