From 1 - 10 / 30
  • There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of '13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and baseline signals were evaluated and statistically compared to test for the presence of fugitive methane emissions. In addition, a time series model of the methane baseline was developed in order to generate alternative realizations of the baseline signal. These were used to provide measures of both the likelihood of detecting fugitive emissions at various emission levels and of the false alarm rate. Results of the statistical analysis and an indicative minimum fugitive methane emission rate that can be detected using a single monitoring station are presented. Poster presented at the American Geophysical Union meeting, December 2013, San Francisco

  • Hot Rocks in Australia - National Outlook Hill, A.J.1, Goldstein, B.A1 and Budd, A.R.2 goldstein.barry@saugov.sa.gov.au hill.tonyj@saugov.sa.gov.au Petroleum & Geothermal Group, PIRSA Level 6, 101 Grenfell St.Adelaide SA 50001 Anthony.Budd@ga.gov.au Onshore Energy & Minerals Division, Geoscience Australia, GPO Box 378 Canberra ACT 26012 Abstract: Evidence of climate change and knowledge of enormous hot rock resources are factors stimulating growth in geothermal energy research, including exploration, proof-of-concept appraisals, and development of demonstration pilot plant projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 120 licence application areas covering ~ 67,000 km2 in Australia. The associated work programs correspond to an investment of $570 million, and that tally excludes deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Australia's geothermal resources fall into two categories: hydrothermal (from relatively hot groundwater) and the hot fractured rock i.e. Enhanced Geothermal Systems (EGS). Large-scale base-load electricity generation in Australia is expected to come predominantly from Enhanced Geothermal systems. Geologic factors that determine the extent of EGS plays can be generalised as: - source rock availability, in the form of radiogenic, high heat-flow basement rocks (mostly granites); - low thermal-conductivity insulating rocks overlying the source rocks, to provide thermal traps; - the presence of permeable fabrics within insulating and basement rocks, that can be enhanced to create heat-exchange reservoirs; and - a practical depth-range, limited by drilling and completion technologies (defining a base) and necessary heat exchange efficiency (defining a top). A national EGS resource assessment and a road-map for the commercialisation of Australia's EGSs are expected to be published in 2008. The poster will provide a synopsis of investment frameworks and geothermal energy projects underway and planned in Australia.

  • A shallow vertical CO2 injection test was conducted over a 21 day period at the Ginninderra Controlled Release Facility in May 2011. The objective of this test was to determine the extent of lateral CO2 dispersion, breakthrough times and permeability of the soil present at the Ginninderra site. The facility is located in Canberra on the CSIRO agricultural Ginninderra Experiment Station. A 2.15m deep, 15cm stainless steel screened, soil gas sampling well was installed at the site and this was used as the CO2 injection well. The CO2 flow rate was 1.6 L/min (STP). CO2 soil effluxes (respiration and seepage) were measured continuously using a LICOR LI-8100A Automated Soil CO2 Flux System equipped with 5 accumulation chambers spaced 1m apart in a radial pattern from the injection well. These measurements were supplemented with CO2 flux spot measurements using a WestSystems portable fluxmeter. Breakthrough at 1m from the injection point occurred within 6 hrs of injection, 32hrs at 2m and after almost 5 days at 3m. The average steady state CO2 efflux was 85 ?mol/m2/s at 1m, 15 ?mol/m2/s at 2m and 5.0 ?mol/m2/s at 3m. The average background CO2 soil respiration efflux was 1.1 - 0.6 ?mol/m2/s. Under windy conditions, higher soil CO2 efflux could be expected due to pressure pumping but this is contrary to the observed results. Prolonged windy periods led to a reduction in the CO2 efflux, up to 30% lower than the typical steady state value.

  • Monitoring is an important aspect in verifying the integrity of the geological storage of greenhouse gases. Geoscience Australia is working with CSIRO, the CO2CRC, the Australian National University, the University of Adelaide and the University of Wollongong to develop and evaluate new techniques to detect and quantify greenhouse gas emissions.

  • Quantification of leakage into the atmosphere from geologically stored CO2 is achievable by means of atmospheric monitoring techniques if the position of the leak can be located and the perturbation above the background concentration is sufficiently large for discrimination. Geoscience Australia and the CO2CRC have recently constructed a site in northern Canberra for the controlled release of greenhouse gases. This facility enables the simulation of leak events and provides an opportunity to investigate techniques for the detection and quantification of emissions of CO2 (and other greenhouse gases) into the atmosphere under controlled conditions. The facility is modelled on the ZERT controlled release facility in Montana. The first phase of the installation is complete and has supported an above ground, point source, release experiment (e.g. simulating leakage from a compromised well). Phase 2 involves the installation of a shallow underground horizontal well for line source CO2 release experiments and this will be installed during the first half of 2011. A release experiment was conducted at the site to explore the application of a technique, termed atmospheric tomography, to simultaneously determine the location and emission rate of a leak when both are unknown. The technique was applied to the release of two gas species, N2O and CO2, with continuous sampling of atmospheric trace gas concentrations from 8 locations 20m distant from a central release point and measurement of atmospheric turbulence and dispersive conditions. The release rate was 1.10 ± 0.02 g min-1 for N2O and 58.5 ± 0.4 g min-1 for CO2 (equivalent to 30.7 ± 0.2 tonnes CO2 yr-1). Localisation using both release species occurred within 0.5 m (2% error) of the known location. Determination of emission rate was possible to within 7% for CO2 and 5% for N2O.

  • Geological storage of CO2 is a leading strategy for large-scale greenhouse gas emission mitigation. Monitoring and verification is important for assuring that CO2 storage poses minimal risk to people's health and the environment, and that it is effective at reducing anthropogenic CO2 emissions. Eddy Covariance (EC) has been proposed as a long-term monitoring solution for geological storage projects and is considered suitable for monitoring areas 1000 - 100,000 m2 in size. Eddy Covariance is a key micrometeorological technique which has traditionally been used for assessing ecosystem exchange of CO2 in a variety of natural and agricultural settings. It measures the vertical transfer of scalar variables such as CO2 via eddies from upwind of the instrumentation, and correlates the measured CO2 flux to the upwind source area based on several key assumptions. These assumptions include that the upwind source area is homogeneous, flat and uniform, which in turn requires that horizontal gradients in CO2 concentration are zero and that horizontal and vertical gradients in the covariance of CO2 concentration and orthogonal wind directions are zero. Work undertaken at the GA-CO2CRC Gininnderra controlled release facility, where CO2 is released from the shallow subsurface (at 2 m depth), suggests that CO2 leakage in the near subsurface will follow paths of least resistance up to the surface. Similar observations have been observed at the ZERT facility in Montana and CO2 Field Lab in Norway. This leads to CO2 leaks having localised, patchy surface expression, rather than a diffuse wide-scale leak which one typically expects (Lewicki et al. 2010). The implication of this is that the source area for a leak is highly inhomogeneous, meaning the magnitudes of CO2 flux values measured using EC are grossly unreliable. These limitations were discussed in Leuning et al.'s (2008) review on CCS atmospheric monitoring technologies yet are not addressed in much of the recent EC leak quantification literature. This presentation will present findings from the first subsurface release at the CO2CRC facility in Canberra (March - May 2012), where EC data was analysed for application in leak detection and quantification. The CO2 release rate was 144 kg/d. Eddy Covariance was successfully used to detect the leak by comparing CO2 fluxes in the direction of the leak to baseline wind sectors. Median CO2 fluxes in the leak direction were 9.1 µmol/m2/s, while the median background flux was 1.0 µmol/m2/s. Separate measurements taken using a soil flux meter found that the daytime background soil flux had a median flux of 1.8 µmol/m2/s but the peak soil flux over a leak was 1100 µmol/m2/s. Quantification and spatially locating the leak were attempted, but due to the problem of source area inhomogeneity, no substantive progress could be made. How an inhomogeneous source area contributes to 'lost' CO2 from the system, through advection and diffusion, will be discussed, coupled with suggestions for how these parameters can be evaluated in future experimental design. Leuning R., Etheridge D., Luhar A., and Dunse B., 2008. Atmospheric monitoring and verification technologies for CO2 sequestration. International Journal of Greenhouse Gas Control, 2(3), 401-414. Lewicki J. L., Hilley G. E., Dobeck L., and Spangler L., 2010. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release. Environmental Earth Sciences, 60(2), 285-297. Presented at the 2014 Australian Earth Sciences Convention (AESC)

  • Australia has embarked on a process of potential commitment through the Kyoto Protocol to contain growth in greenhouse gas emissions to 8% between 1990 and the reporting period of 2008 - 2012. The target is well below the estimated growth of about 28% under the `business as usual' condition. Australia's greenhouse gas inventory estimates that 502 million tonnes of carbon dioxide equivalents were emitted in the base year of 1990. This report examines over 175 candidate options for reducing greenhouse gas emissions to identify their technical feasibility, cost per tonne of carbon dioxide avoided and capability to reduce emissions under Australian conditions. The candidate options were not intended to represent an exhaustive list but they encompass major and some lesser options being canvassed in Australia and overseas. Preferred options were selected on their performance towards the criteria of technical feasibility, cost and capability.

  • Deployment of Unmanned Aerial Vehicle during surface CO2 release experiments at the Ginninderra greenhouse gas controlled release facility H. Berko (CO2CRC, Geoscience Australia), F. Poppa (The Australian National University), U. Zimmer (The Australian National University) and A. Feitz (CO2CRC, Geoscience Australia) Lagrangian stochastic (LS) forward modelling of CO2 plumes from above-surface release experiments conducted at the GA-CO2CRC Ginninderra controlled release facility demonstrated that small surface leaks are likely to disperse rapidly and unlikely to be detected at heights greater 4 m; this was verified using a rotorcraft to map out the plume. The CO2 sensing rotorcraft unmanned aerial vehicle (RUAV) developed at the Australian National University, Canberra, is equipped with a CO2 sensor, a GPS, lidar and a communication module. It was developed to detect and locate CO2 gas leaks; and estimate CO2 concentration at the emission source. The choice of a rotor-craft UAV allows slower flight speeds compared to speeds of a fixed-wing UAV; and the electric powered motor enables flight times of 12 min. In experiments conducted at the Ginninderra controlled release facility, gaseous CO2 (100 kg per day) was released from a small diffuse source located in the middle of the paddock, and the RUAV was flown repeatedly over the CO2 source at a few meters height. Meteorological parameters measured continuously at the site at the time of the flight were input in the LS model. Mapped out horizontal and vertical CO2 concentrations established the need to be close to the ground in order to detect CO2 leakage using aerial techniques. Using the rotorcraft as a mobile sensor could be an expedient mechanism to detect plumes over large areas, and would be important for early detection of CO2 leaks arising from CCS activities.

  • A metadata report for the atmospheric monitoring station installed in Arcturus, south of Emerald in central Queensland. The station was installed for baseline atmospheric monitoring to contribute to emission modelling spanning 2010-2014. The station included compositional gas analysers, supporting meteorological sensors and an eddy covariance flux tower. The metadata covered in the report include: the major variables measured by each instrument, the data duration and frequency, data accuracy, calibration and corrections, the location the data is stored, and the primary contact for the data.

  • The decision at the 2011 United Nations climate change meeting in Durban to accept CCS as a CDM project activity was truly historic and long overdue. The United Nations Clean Development Mechanism (CDM) allows emission reduction projects in developing countries to earn certified emission reduction (CER) credits, each equivalent to one tonne of CO2. CERs can be traded and sold, and used by developed countries to meet part of their emission reduction targets under the Kyoto Protocol. The intention of the mechanism is to stimulate sustainable development and emission reductions, while providing developed countries with some flexibility in how they achieve their emission reduction targets. The CDM allows developed countries to invest in emission reductions at lowest cost. Since its inception, the CDM has been identified as a means to reduce the cost of CCS projects and so initiate more projects. After five years of negotiations to get CCS accepted as a CDM project activity, the Cancun Decision (2010) put in place a work program to address issues of general concern before CCS could be included in the CDM. The 2010 work program consisted of submissions, a synthesis report, a technical workshop, and concluded with the UNFCCC Secretariat producing draft 'modalities and procedures' describing comprehensive requirements for CCS projects within the CDM. This twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December, 2012, with Parties agreeing to the text specifying the modalities and procedures for CCS as CDM project activities. The provisions of the Durban Decision (2011) cover a range of technical issues including site selection and characterisation, risk and safety assessment, monitoring, liabilities, verification and certification, environmental and social impact assessments, responsibilities for non-permanence, and timing of the CDM-project end. etc