From 1 - 2 / 2
  • <p>This Record presents the results of 26 new zircon U-Pb isotopic analyses, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP2e), under the Commonwealth Government’s Exploring for the Future (EFTF) program, a $100.5 million, four year, initiative to better understand the mineral, energy and groundwater potential across northern Australia. <p>These new data, determined on sedimentary and volcanic rocks, were collected from across the South Nicholson region, located in the north-eastern Northern Territory. The South Nicholson region is geographically located between two highly prospective geological provinces, the greater McArthur Basin in the Northern Territory and the Mount Isa Province in Queensland, regions noted for their hydrocarbon potential and world-class base-metal endowment. <p>The South Nicholson region has been sparsely investigated by modern geological investigations, and, as such, these new SHRIMP U-Pb data, in concert with other complementary EFTF geochronological, geochemical and geophysical datasets from the region (e.g. Anderson et al., 2019; Carr et al., 2019; Ley-Cooper and Brodie, 2019; Jarrett et al., 2019) will place important geological constraints on the geological evolution, the timing of deposition, sedimentary processes, basin architecture and evolution of the South Nicholson region and, arguably most significantly, provide new improved lithostratigraphic and chronostratigraphic correlations with the adjacent highly prospective Proterozoic Basins. <p>Such geological correlations are critical for reducing exploration risk, improve resource prospectivity and enabling targeted ‘greenfield’ resource exploration activities, a tangible key objective under the Exploring for the Future initiative.

  • The fundamental geological framework of the concealed Paleoproterozoic East Tennant area of northern Australia is very poorly understood, despite its relatively thin veneer of Phanerozoic cover and its position along strike from significant Au–Cu–Bi mineralisation of the Tennant Creek mining district within the outcropping Warramunga Province. We present 18 new U–Pb dates, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), constraining the geological evolution of predominantly Paleoproterozoic metasedimentary and igneous rocks intersected by 10 stratigraphic holes drilled in the East Tennant area. The oldest rocks identified in the East Tennant area are two metasedimentary units with maximum depositional ages of ca. 1970 Ma and ca. 1895 Ma respectively, plus ca. 1870 Ma metagranitic gneiss. These units, which are unknown in the nearby Murphy Province and outcropping Warramunga Province, underlie widespread metasedimentary rocks of the Alroy Formation, which yield maximum depositional ages of 1873–1864 Ma. While parts of this unit appear to be correlative with the ca. 1860 Ma Warramunga Formation of the Warramunga Province, our data suggest that the bulk of the Alroy Formation in the East Tennant area is slightly older, reflecting widespread sedimentation at ca. 1870 Ma. Throughout the East Tennant area, the Alroy Formation was intruded by voluminous 1854–1845 Ma granites, contemporaneous with similar felsic magmatism in the outcropping Warramunga Province (Tennant Creek Supersuite) and Murphy Province (Nicholson Granite Complex). In contrast with the outcropping Warramunga Province, supracrustal rocks equivalent to the 1845–1810 Ma Ooradidgee Group are rare in the East Tennant area. Detrital zircon data from younger sedimentary successions corroborate seismic evidence that at least some of the thick sedimentary sequences intersected along the southern margin of the recently defined Brunette Downs rift corridor are possible age equivalents of the ca. 1670–1600 Ma Isa Superbasin. Our new results strengthen ca. 1870–1860 Ma stratigraphic and ca. 1850 Ma tectono-magmatic affinities between the East Tennant area, the Murphy Province, and the mineralised Warramunga Province around Tennant Creek, with important implications for mineral prospectivity of the East Tennant area. Appeared in Precambrian Research Volume 383, December 2022.