From 1 - 10 / 23
  • The Upper Burdekin Chloride Mass Balance Recharge web service depicts the recharge rates have been estimated at borehole locations in the Nulla and McBride basalt provinces. Using rainfall rates, rainfall chemistry and groundwater chemistry, the recharge rates have been estimated through the Chloride Mass Balance approach.

  • The Upper Burdekin Basalt extents web service delivers province extents, detailed geology, spring locations and inferred regional groundwater contours for the formations of the Nulla and McBride Basalts. This work has been carried out as part of Geoscience Australia's Exploring for the Future program.

  • This grid dataset is an estimation of the relative surface potential for recharge within the McBride Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>References</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688

  • The Tasselled Cap Wetness (TCW) percentage exceedance composite represents the behaviour of water in the landscape, as defined by the presence of water, moist soil or wet vegetation at each pixel through time. The summary shows the percentage of observed scenes where the Wetness layer of the Tasselled Cap transform is above the threshold, i.e. where each pixel has been observed as ‘wet’. Areas that retain surface water or wetness in the landscape during the dry season are potential areas of groundwater discharge and associated GDEs. The TCW exceedance composite was classified into percentage intervals to distinguish areas that were wet for different proportions of time during the 2013 dry season. Areas depicted in the dataset have been exaggerated to enable visibility.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.

  • This report presents key results of groundwater barometric response function development and interpretation from the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. The NBP and MBP basalt aquifers are heterogeneous, fractured, vesicular systems. This report assesses how water levels in monitoring bores in the NBP and MBP respond to barometric pressure changes to evaluate the degree of formation confinement. The main process used to evaluate water level response to barometric pressure in this study is based on barometric efficiency (BE). The BE of a formation is calculated by dividing the change in monitoring bore water level by the causative barometric pressure change. Both parameters are expressed in the same units, so BE will typically be some fraction between zero and one. BE is not necessarily constant over time; the way BE changes following a theoretical step change in barometric pressure can be described using a barometric response function (BRF). BRFs were calculated in the time domain and plotted as BE against time lag for interpretation. The BRF shape was used to assess the degree of formation confinement. Although there is some uncertainty due to monitoring bore construction issues (including long effective screens) and potentially air or gas trapped in the saturated zone, all BRFs in the current project are interpreted to indicate unconfined conditions. This finding is supported by the identification of recharge at many monitoring bores through hydrograph analysis in other EFTF project components. We conclude that formations are likely to be unconfined at many project monitoring bores assessed in this study.

  • The Upper Burdekin Chloride Mass Balance Recharge web service depicts the recharge rates have been estimated at borehole locations in the Nulla and McBride basalt provinces. Using rainfall rates, rainfall chemistry and groundwater chemistry, the recharge rates have been estimated through the Chloride Mass Balance approach.

  • This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.

  • This technical report details the methods and results the drilling programs of the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This report was written by Queensland Government collaborators in the Department of Environment and Science, and is published here as supplied to Geoscience Australia at the conclusion of the project. The drilling program itself was conducted by the Department of Environment and Science as part of the Upper Burdekin Groundwater Project. A total of 17 holes were drilled in 2017-18 at 13 sites with a total combined depth of 943.2 metres. These comprise selected locations across both the Nulla Basalt Province and McBride Basalt Province. A network of 15 monitoring bores were constructed with two test holes backfilled and decommissioned.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.