Authors / CoAuthors
Leask, E. | Tkal¿i¿, H. | Fichtner, A. | Gorbatov, A. | Hingee, M.
Abstract
Seismic activity in the region around Australia results in a significant tsunami hazard to the coastal areas of Australia. Hence seismicity is monitored in real time by Geoscience Australia (GA), which uses a network of permanent broadband seismometers. Although seismic moment tensor (MT) solutions are routinely determined using 1-D structural models of Earth, we have recently demonstrated that a 3-D model of the Australian continent developed using full waveform tomography significantly improves the determination of MT solutions of earthquakes from tectonically active regions. A complete-waveform, time-domain MT inversion method has been developed using a point-source approximation. We present a suite of synthetic tests using first a 1-D and then a 3-D structural model. We study the feasibility of deploying 3-D versus 1-D Earth structure for the inversion of seismic data and we argue for the advantages of using the 3-D structural model. The 3-D model is superior to the 1-D model, as a number of sensitivity tests show. Current work is focused on a real time automated MT inversion system in Australia relying on Australian and other international stations.
Product Type
nonGeographicDataset
eCat Id
71489
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- External Publication
- ( Theme )
-
- seismology
- ( Theme )
-
- 3D model
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Earth Sciences
-
- Published_Internal
Publication Date
2011-01-31T00:00:00
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
unknown
Topic Category
geoscientificInformation
Series Information
Lineage
Unknown
Parent Information
Extents
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.