From 1 - 10 / 28
  • <div>In response to the acquisition of national-scale airborne electromagnetic surveys and the development of a national depth estimates database, a new workflow has been established to interpret airborne electromagnetic conductivity sections. This workflow allows for high quantities of high quality interpretation-specific metadata to be attributed to each interpretation line or point. The conductivity sections are interpreted in 2D space, and are registered in 3D space using code developed at Geoscience Australia. This code also verifies stratigraphic unit information against the national Australian Stratigraphic Units Database, and extracts interpretation geometry and geological data, such as depth estimates compiled in the Estimates of Geological and Geophysical Surfaces database. Interpretations made using this workflow are spatially consistent and contain large amounts of useful stratigraphic unit information. These interpretations are made freely-accessible as 1) text files and 3D objects through an electronic catalogue, 2) as point data through a point database accessible via a data portal, and 3) available for 3D visualisation and interrogation through a 3D data portal. These precompetitive data support the construction of national 3D geological architecture models, including cover and basement surface models, and resource prospectivity models. These models are in turn used to inform academia, industry and governments on decision-making, land use, environmental management, hazard mapping, and resource exploration.</div>

  • Geoscience Australia is leading a regional evaluation of potential mineral, energy and groundwater resources through the Exploring for the Future (EFTF) program. This stratigraphic assessment is part of the Onshore Basin Inventories project, and was undertaken to understand Devonian-aged depositional systems and stratigraphy in Queensland’s Adavale Basin. Such data are fundamental for any exploration activities. Maximising the use of existing well data can lead to valuable insights into the regional prospectivity of sedimentary basins. Data from 53 Adavale Basin wells have been used to evaluate subsurface stratigraphy, depositional environments and hydrocarbon shows across the basin. Stratigraphic data from 26 representative wells, where the well intersected at least three Devonian stratigraphic units, are used to generate chronostratigraphic time-space charts and two-dimensional well correlations within, and between, different (northern, north central, central, west central, east central and southern) parts of the basin. The primary objectives of the study are: • stratigraphic gap analysis to identify geological uncertainties and data deficiencies in the areas of interest, • integrate the well data with Geoscience Australia’s databases (i.e., Australian Stratigraphic Units, Time Scale, Geochronology, STRATDAT, RESFACS),the Geological Survey of Queensland’s Datasets and publicly available (published and unpublished) research data and information, • determine the lithostratigraphic unit tops, log and lithology characterisations, depositional facies, boundary criteria, spatial and temporal distribution and regional correlations, • integrate key biostratigraphic zones and markers with geochronological absolute age dates to generate a chronostratigraphic Time-Space Diagram of the basin. This work improves the understanding of the chronostratigraphic relationships across the Adavale Basin. The age of the sedimentary successions of the basin have been refined using geochronology, biostratigraphy and lithostratigraphic correlation. The chronostratigraphic and biozonation chart of the Adavale Basin has been updated and the stratigraphic, biostratigraphic and hydrocarbon shows datasets will be available for viewing and download via the Geoscience Australia Portal (https://portal.ga.gov.au/restore/15808dee-efcd-428e-ba5b-59b0106a83e3).

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.&nbsp;</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.&nbsp;Geoscience Australia, in collaboration with the Northern Territory Geological Survey is acquiring isotopic, geochronological, geochemical and geomechanical data from drillholes intersecting the Birrindudu Basin as part of phase two of EFTF. </div><div><br></div><div>This report presents results on selected rock samples from the Birrindudu Basin, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate-bearing samples, and</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div>

  • <div>NDI Carrara&nbsp;1 is a 1751 m stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI). This campaign was a collaboration between Geoscience Australia under the Exploring for the Future program, together with MinEx CRC and the Northern Territory Geological Survey. It is the first drillhole to intersect Proterozoic rocks of the Carrara Sub-basin, a recently discovered depocentre in the South Nicholson region. The drill hole intersected ~625 m of the Paleozoic Georgina Basin, which overlies ~1120 m of Proterozoic carbonates, black shales and siliciclastic rocks, with hydrocarbon shows encountered in both the Paleozoic and Proterozoic sections. Following the completion of the drillhole, a comprehensive analytical program was carried out by Geoscience Australia to better understand the geology of the Carrara Sub-basin and its resource potential.</div><div><br></div><div>Here we present new high-resolution strontium (87Sr/86Sr), carbon (δ13C) and oxygen (δ18O) isotope data from carbonate bearing samples of the Paleozoic Georgina Basin and the Proterozoic Lawn Hill Formation intersected in NDI Carrara&nbsp;1. The aim of this data acquisition was to provide an improved understanding of the paleo-depositional environments and local/global chemostratigraphy trends recorded in the Carrara Sub-basin. </div><div><br></div><div>The majority of samples show significant alteration and thus caution should be exercised when using this data for assessing primary depositional conditions and contemporary sea-water chemistry. Despite the altered nature of most samples, samples belonging to undifferentiated Georgina Basin preserve 87Sr/86Sr ratios close to that of mid-Cambrian seawater, indicating the sampled intervals of Georgina Basin were likely connected to the global Cambrian ocean.&nbsp;Two small positive δ13C excursions (with positive shift in δ18O) within Georgina Basin samples may coincide with reported mid-Cambrian positive δ13C global marine excursions. </div><div><br></div><div>The least altered samples from the Proterozoic Lawn Hill Formation show more radiogenic 87Sr/86Sr values than the expected value of coeval mid-Proterozoic ocean at ~1600 Ma. These radiogenic 87Sr/86Sr values may reflect (i) influx of terrigenous material into a restricted basin with reduced interaction with the global ocean, or (ii) secondary overprinting by more radiogenic diagenetic fluids.</div> Abstract/Poster submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.</div><div><br></div><div>In order to gain insights into the resource potential of the South Nicholson region, a key region of focus for EFTF, National Drilling Initiative (NDI) Carrara&nbsp;1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS), and the MinEx CRC. NDI Carrara&nbsp;1 is the first drill hole to intersect the, as yet, undifferentiated Proterozoic rocks of the newly defined Carrara Sub-Basin within the South Nicholson region. NDI Carrara&nbsp;1 is located on the western flank of the Carrara Sub-basin, reaching a total depth of 1751&nbsp;m, intersecting ca. 630&nbsp;m of Cambrian Georgina Basin overlying ca. 1100&nbsp;m of Proterozoic carbonates, black shales and minor siliciclastics.</div><div><br></div><div>Geoscience Australia is undertaking a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara&nbsp;1 based on wireline data, as well as undertaking a range of analyses of over 400 physical samples recovered through the entire core. These analyses include geochronology, isotopic studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity, and petroleum systems investigations. Hylogger™ data is available at the NTGS Geoscience Exploration and Mining Information System (GEMIS) webpage.</div><div><br></div><div>This data release presents results for analyses on selected rock samples from NDI Carrara 1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div><br></div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate bearing samples, and</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div><div><br></div>

  • <div>The Canning Basin is a prospective hydrocarbon frontier basin and is unusual for having limited offshore seismic and well data in comparison with its onshore extent. In this study, seismic mapping was conducted to better resolve the continuity of 13 key stratigraphic units from onshore to offshore to delineate prospective offshore hydrocarbon-bearing units, and better understand the distribution of mafic igneous units that can compartmentalise migration pathways and influence heat flow. The offshore Canning Basin strata are poorly constrained in six wells with limited seismic coverage; hence data availability was bolstered by integrating data from the onshore portion of the basin and adjacent basins into a single 3D seismic stratigraphic model. This model integrates over 10 000 km of historical 2D seismic data and 23 exploration wells to allow mapping of key stratal surfaces. Mapped seismic horizons were used to construct isochores and regional cross-sections. Seven of the 13 units were mapped offshore for the first time, revealing that the onshore and offshore stratigraphy are similar, albeit with some minor differences, and mafic igneous units are more interconnected than previously documented whereby they may constitute a mafic magmatic province. These basin-scale maps provide a framework for future research and resource exploration in the Canning Basin. To better understand the basin’s geological evolution, tectonic history and petroleum prospectivity, additional well data are needed in the offshore Canning Basin where Ordovician strata have yet to be sampled.</div><div><br></div><div>C. T. G. Yule, J. Daniell, D. S. Edwards, N. Rollet & E. M. Roberts&nbsp;(2023).&nbsp;Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity,&nbsp;Australian Journal of Earth Sciences,&nbsp;DOI:&nbsp;10.1080/08120099.2023.2194945</div> Appeared in Australian Journal of Earth Sciences Pages 691-715, Volume 70, 2023 - Issue 5.

  • <div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20&nbsp;km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500&nbsp;m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>The Proterozoic Birrindudu Basin is an underexplored region that contains sparse geological data. Strata of similar age are highly prospective to the east, in the McArthur and South Nicholson basins and the Mount Isa region. To investigate this underexplored and data-poor region, the L214 Northwest Northern Territory Seismic Survey was acquired in August to September 2023 by GA and co-funded by the Northern Territory Government. Prior to this survey the region contained minimal seismic data. To complement the acquisition of the seismic survey, a sampling program of legacy stratigraphic and mineral exploration drill holes was also undertaken.</div><div><br></div><div>The new sampling program and seismic reflection data acquired over the Birrindudu Basin and its flanks, has identified many areas of exploration opportunity. This has almost tripled seismic coverage over the Birrindudu Basin, which has enabled new perspectives to be gained on its geology and relationship to surrounding regions. The new seismic has shown an increase in the extent of the Birrindudu Basin, revealing the presence of extensive concealed Birrindudu Basin sedimentary sequences and major, well preserved depocentres. In the central Birrindudu Basin and Tanami Region, shallow basement and deep-seated faults are encouraging for mineralisation, as these structures have the potential to focus mineralised fluids to the near surface. The clear presence of shallow Tanami Region rocks underlying the southern Birrindudu Basin sequences at the northern end of line 23GA-NT2 extends the mineral resource potential of the Tanami Region further north into the southern Birrindudu Basin. A new minimum age of 1822±7 Ma for the deposition of metasediments in drill hole LBD2 for rocks underlying the central Birrindudu Basin, extends the age-equivalent mineral-rich basement rocks of the Tanami Region north into the central Birrindudu Basin – extending the mineral resource potential into a new region.</div><div><br></div><div>The continuous stratigraphy imaged of the Birrindudu Basin by the new seismic is encouraging for energy prospectivity, as the system elements needed for an effective petroleum system, better defined by the new sampling program results, have been imaged to extend over a wider and deeper area. New organic petrological analysis and reflectance data indicate the sampled sections have reached thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the central and northwestern Birrindudu Basin. With the expanded breadth of these rocks demonstrated on the seismic, this greatly increases the spatial extent of hydrocarbon prospectivity in Birrindudu Basin.</div>

  • The Shipwreck and Sherbrook supersequences together constitute the upper Cretaceous succession in the Otway Basin that was deposited during an extensional basin phase. In the Shipwreck Trough, where the upper Cretaceous succession is well explored, gas fields are hosted by the Shipwreck Supersequence (SS). Elsewhere, the upper Cretaceous interval is lightly explored, and the deep-water area is considered an exploration frontier. We present regional gross depositional environment (RGDE) maps for the LC1.1 and LC1.2 sequences of the Shipwreck SS, and the LC2 Sherbrook SS. Fluvial Plain, Coastal-Delta Plain and Shelf RGDEs were interpreted from wireline logs, cores, and seismic facies. The Fluvial Plain and Coastal-Delta Plain RGDEs are mostly restricted to the inboard platform areas and the inner Morum Sub-basin. The mud-prone Shelf RGDE is widespread across the deep-water Morum and Nelson depocentres. The extent of the Fluvial and Coastal-Delta Plain belts progressively increases up-section, imparting a regressive aspect to the succession, and delineating a large fluvial-deltaic complex in the north-west of the basin. Thick seal development across the greater Shipwreck Trough, potentially mature source rocks in the deep-water basin, and thick reservoir development in the hanging wall of growth faults in the inner Morum Sub-basin are insights derived from this study, and will inform area selection for detailed gross depositional environment mapping, formulation of new hydrocarbon and carbon dioxide storage plays, and inputs for petroleum systems modelling. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)