neotectonic features
Type of resources
Keywords
Publication year
Topics
-
<div>This document provides a summary of fault parameterisation decisions made for the faults comprising the fault-source model (FSM) for 2023 National Seismic Hazard Assessment (NSHA23). As with the NSHA18, the FSM for the NSHA23 implementation requires the following parameters: simplified surface trace, dip, dip direction, and slip-rate. As paleoseismic data exist for only a few of the approximately 400 faults within the Australian Neotectonic Features database, we use the Neotectonic Domains model as a framework to parametrise uncharacterised faults.</div>
-
We present a preliminary probabilistic seismic hazard analysis (PSHA) of a site in the Otway basin, Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking at the site and utilizes three datasets: (1) active faults, (2) historical seismicity, and (3) geodetic surface velocities. Our analysis of geodetic data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a geodetic-based source model for this Otway model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters and in the ground-motion prediction. A new feature for seismic hazard modeling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in our Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. Our preliminary analysis therefore indicates that the site is exposed to a low seismic hazard that is consistent with the intraplate tectonic setting of the region and unlikely to pose a significant hazard for CO2 containment and infrastructure.
-
In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.
-
Tectonic geomorphology along the continental margin of Western Australia indicates the presence of an approximately 2000 km long zone of dextral-oblique neotectonic faults and folds referred to as the Western Australian shear zone (WASZ). The WASZ reoccupies older rift related structures that initially formed during periods of continental-scale fragmentation in the Paleozoic and Mesozoic Eras. Reactivation in the WASZ is coincident with late Neogene reorganization of Australia’s plate boundaries and realignment of the intraplate stress field. Neotectonic deformation in the southern WASZ is dominated by transpressional inversion within the extended crustal domain between Australian oceanic crust to the west and non-extended Australian continental crust to the east. The WASZ appears to accommodate differential motion expressed as dextral transpression between oceanic and non-extended continental tectonic blocks—or micro-plates.