From 1 - 10 / 139
  • The Carnarvon shelf at Point Cloates, Western Australia, is characterised by a series of prominent ridges and hundreds of mounds that provide hardground habitat for coral and sponge gardens. The largest ridge is 20 m high, extends 15 km alongshore in 60 m water depth and is interpreted as a drowned fringing reef. To landward, smaller ridges up to 1.5 km long and 16 m high are aligned to the north-northeast and are interpreted as relict aeolian dunes. Mounds are less than 5 m high and may also have a sub-aerial origin. In contrast, the surrounding seafloor is sandy with relatively low densities of epibenthic organisms. The dune ridges are estimated to be Late Pleistocene in age and their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the postglacial marine transgression. On the outer shelf, sponges grow on isolated low profile ridges at ~85 m and 105 m depth and are also interpreted as partially preserved relict shorelines.

  • A nationally-consistent wave resource assessment is presented for Australian shelf (<300 m) waters. Wave energy and power were derived from significant wave height and period, and wave direction hindcast using the AusWAM model for the period 1 March 1997 to 29 February 2008 inclusive. The spatial distribution of wave energy and power is available on a 0.1° grid covering 110'156° longitude and 7'46° latitude. Total instantaneous wave energy on the entire Australian shelf is on average 3.47 PJ. Wave power is greatest on the 3,000 km-long southern Australian shelf (Tasmania/Victoria, southern Western Australia and South Australia), where it widely attains a time-average value of 25-35 kW m-1 (90th percentile of 60-78 kW m-1), delivering 800-1100 GJ m-1 of energy in an average year. New South Wales and southern Queensland shelves, with moderate levels of wave power (time-average: 10-20 kW m-1; 90th percentile: 20-30 kW m-1), are also potential sites for electricity generation due to them having a similar reliability in resource delivery to the southern margin. Time-average wave power for most of the northern Australian shelf is <10 kW m-1. Seasonal variations in wave power are consistent with regional weather patterns, which are characterised by winter SE trade winds/summer monsoon in the north and winter temperate storms/summer sea breezes in the south. The nationally-consistent wave resource assessment for Australian shelf waters can be used to inform policy development and site-selection decisions by industry.

  • Models of seabed sediment mobilisation by waves and currents over Australia's continental shelf environment are used to examine whether disturbance regimes exist in the context of the intermediate disturbance hypothesis (IDH). Our study shows that it is feasible to model the frequency and magnitude of seabed disturbance in relation to the dominant energy source (wave-dominated shelf, tide-dominated shelf or tropical cyclone dominated shelf). Areas are mapped where the recurrence interval of disturbance events is comparable to the rate of ecological succession, which meets criteria defined for a disturbance regime. We focus our attention on high-energy, patch-clearing events defined as exceeding the Shields (bed shear stress) parameter value of 0.25. Using known rates of ecological succession for different substrate types (gravel, sand, mud), predictions are made of the spatial distribution of a dimensionless ecological disturbance index (ED), given as: ED = FA (ES/RI), where ES is the ecological succession rate for different substrates, RI is the recurrence interval of disturbance events and FA is the fraction of the frame of reference (surface area) disturbed. Maps for the Australian continental shelf show small patches of ED-seafloor distributed around the continent, on both the inner and outer shelf. The patterns are different for wave-dominated (patches on the outer shelf trending parallel to the coast), tide-dominated (patches crossing the middle-shelf trending normal to the coast) and cyclone-dominated (large oval-shaped patches crossing all depths). Only a small portion of the shelf (perhaps ~10%) is characterised by a disturbance regime as defined here. To our knowledge, this is the first time such an analysis has been attempted for any continental shelf on the earth.

  • The movie describes the marine reconnaisance and seismic surveys undertaken between November 2008 and February 2009 as part of the South-West Margin Project. This is part of the broader part of the Energy Security Program. Video and still images from the marine reconnaisance and seismic surveys. Seismic cross-sections. Bathymetric flythroughs

  • The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.

  • Prydz Bay and the Mac.Robertson Land Shelf exhibit many of the variations seen on Antarctic continental shelves. The Mac.Robertson Shelf is relatively narrow with rugged inner shelf topography and shalow outer banks swept by the west-flowing Antarctic Coastal Current. U-shaped valleys cut the shelf. it has thin sedimentary cover deposited and eroded by cycles of glacial advance and retreat through the Neogene and Quaternary. Modern sedimention is diatom-rich Siliceosu Muddy OOze in shelf deeps while on the banks, phytodetritus, calcareous bioclasts and terrigenous material are mixed by iceberg ploughing. Prydz Bay is a large embayment fed by the Amery Ice Shelf. it has a broad inner shelf deep and outer bank with depths ranging from 2400 m beneath the ice shelf to 100 m on the outer bank. A clockwise gyre flows through the bay. Fine mud and siliceous ooze drapes the sea floor however banks are scoured by icebergs to depths of 500 m.

  • This map was created by GA for the purposes of seeking clarifications with AIMS and DFAT for survey work in the Timor Sea. A base map product was modified for the purpose.

  • This short compilation is a 3D Bathymetric flythrough starting from Exmouth to Fremantle and through the Perth Canyon. Also showing the Houtman, Mentell, Wallaby Plateau, canyons and new volcanoes. This short compilation movie will be incorporated into a PowerPoint presentation to be shown at IUGG 2011. It is in 4:3 format. The 3D flythrough footage was originally created for 08-3476 movie - South West Marine Margin, March 2010.

  • Submerged relict reef systems and modern coral communities discovered around the Balls Pyramid shelf are presented as new evidence of extensive carbonate production at the boundary of reef-forming seas. Balls Pyramid is the southernmost island in a chain of island-reefs in the southwest Pacific Ocean, 24 km south of the southernmost known coral reef in the Pacific Ocean at Lord Howe Island. This paper explores the detailed geomorphic structure of the shelf through the production of a high resolution bathymetric model from multibeam echosounder data and depth estimates from satellite imagery. Key seafloor features identified include a large, mid shelf reef dominating the shelf landscape in 20 - 60 m water depth, mid shelf basins and channels, and shelf margin terrace sequences in 50 - 100 m depth. Sub-bottom profiles, backscatter, drill core and vibro-core data are used to investigate the seafloor composition. Drill cores extracted from the submerged reef surface confirm coral, coralline algae and cemented sands composition, and vibro-core material extracted from unconsolidated areas demonstrate substantial accumulation of carbonates shed from the reef surface. Underwater video imagery reveals abundant modern mesophotic reef communities, including hard corals, colonising the relict reef surface. This paper reveals prolific past reef growth and abundant modern coral growth on what was previously considered to be a planated volcanic shelf outside of reef-forming seas, thus extending understanding of reef evolution at, and beyond, the limits of growth.