From 1 - 3 / 3
  • Geoscience Australia has undertaken a regional seismic mapping study of the offshore Otway Basin extending across the explored inner basin to the frontier deep-water region. Seismic interpretation covers over 18000 line-km of new and reprocessed data acquired in the 2020 Otway Basin seismic program and over 40000 line-km of legacy 2D seismic data. We present new basin-scale isochore maps that show the distribution of the Cretaceous depocentres. Maps for the Lower Cretaceous Crayfish and Eumeralla supersequences, together with those recently published for the Upper Cretaceous Shipwreck and Sherbrook Supersequences, completes the set of isochore maps for the main tectonostratigraphic basin intervals. Mapping of basement involved faults has revealed structural fabrics that have influenced depocentre development. The tectonostratigraphic development of depocentres and maps of deep crustal units delineate crustal thinning trends related to late Cretaceous extension phases. This work highlights the need to review and update structural elements. For example, the boundary between the Otway and Sorell basins is now geologically constrained. The refinements to the tectonostratigraphic evolution of the Otway Basin presented here have important implications for the distribution and potential maturity of petroleum systems, especially with regard to heat flow associated with crustal extension. Presented at the 2024 Australian Energy Producers Conference & Exhibition (AEP) (https://energyproducersconference.au/conference/)

  • The Shipwreck and Sherbrook supersequences together constitute the upper Cretaceous succession in the Otway Basin that was deposited during an extensional basin phase. In the Shipwreck Trough, where the upper Cretaceous succession is well explored, gas fields are hosted by the Shipwreck Supersequence (SS). Elsewhere, the upper Cretaceous interval is lightly explored, and the deep-water area is considered an exploration frontier. We present regional gross depositional environment (RGDE) maps for the LC1.1 and LC1.2 sequences of the Shipwreck SS, and the LC2 Sherbrook SS. Fluvial Plain, Coastal-Delta Plain and Shelf RGDEs were interpreted from wireline logs, cores, and seismic facies. The Fluvial Plain and Coastal-Delta Plain RGDEs are mostly restricted to the inboard platform areas and the inner Morum Sub-basin. The mud-prone Shelf RGDE is widespread across the deep-water Morum and Nelson depocentres. The extent of the Fluvial and Coastal-Delta Plain belts progressively increases up-section, imparting a regressive aspect to the succession, and delineating a large fluvial-deltaic complex in the north-west of the basin. Thick seal development across the greater Shipwreck Trough, potentially mature source rocks in the deep-water basin, and thick reservoir development in the hanging wall of growth faults in the inner Morum Sub-basin are insights derived from this study, and will inform area selection for detailed gross depositional environment mapping, formulation of new hydrocarbon and carbon dioxide storage plays, and inputs for petroleum systems modelling. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)

  • <div>Gas production from the Inner Otway Basin commenced in the early 2000s but the deep-water part of this basin remains an exploration frontier. Ground-truthing of depositional environments (DE) and gross depositional environments (GDE) is an important contribution to play-based exploration in the Otway Basin. This digital dataset consists of core logs and core photographs of approximately 700 m of core from 19 wells across the entire offshore basin. Observations recorded in the logs include lithology, modal grain size, stacking patterns, carbonate mud percentage, bioturbation index, and DE/GDE intervals. Cubitt et al. 2023 describes how core-based DE/GDE interpretations were applied to wireline log signatures with interpretations made from TD to the base Cenozoic in 38 wells across the basin.&nbsp;DE and DE tracks are included in the well composite logs compiled by Nguyen et al (2024).</div>