From 1 - 10 / 38
  • This report provides a description of the activities completed during the Bynoe Harbour Marine Survey, from 3 May and 17 May 2016 on the RV Solander (Survey GA4452/SOL6432). This survey was a collaboration between Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) and the second of four surveys in the Darwin Harbour Seabed Habitat Mapping Program. This 4 year program (2014-2018) aims to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline information and developing thematic habitat maps that will underpin future marine resource management decisions. The program was made possible through funds provided by the INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The specific objectives of the Bynoe Harbour Marine Survey GA4452/SOL6432 were to: 1. Obtain high resolution geophysical (bathymetry) data for the deeper areas of Bynoe Harbour (<5 m), including Port Patterson; and, 2. Characterise substrates (acoustic backscatter properties, sub-bottom profiles, grainsize, sediment chemistry) the deeper areas of Bynoe Harbour (<5 m), including Port Patterson. Data acquired during the survey included: 698 km2 multibeam sonar bathymetry, water column and backscatter; 102 Smith-McIntyre grabs, 104 underwater camera drops, 29 sub-bottom profile lines and 34 sound velocity profiles.

  • To meet the increasing demand for natural resources globally, industry faces the challenge of exploring new frontier areas that lie deeper undercover. Here, we present an approach to, and initial results of, modelling the depth of four key chronostratigraphic packages that obscure or host mineral, energy and groundwater resources. Our models are underpinned by the compilation and integration of ~200 000 estimates of the depth of these interfaces. Estimates are derived from interpretations of newly acquired airborne electromagnetic and seismic reflection data, along with boreholes, surface and solid geology, and depth to magnetic source investigations. Our curated estimates are stored in a consistent subsurface data repository. We use interpolation and machine learning algorithms to predict the distribution of these four packages away from the control points. Specifically, we focus on modelling the distribution of the base of Cenozoic-, Mesozoic-, Paleozoic- and Neoproterozoic-age stratigraphic units across an area of ~1.5 million km2 spanning the Queensland and Northern Territory border. Our repeatable and updatable approach to mapping these surfaces, together with the underlying datasets and resulting models, provides a semi-national geometric framework for resource assessment and exploration. <b>Citation:</b> Bonnardot, M.-A., Wilford, J., Rollet, N., Moushall, B., Czarnota, K., Wong, S.C.T. and Nicoll, M.G., 2020. Mapping the cover in northern Australia: towards a unified national 3D geological model. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>The Mesoproterozoic South Nicholson Basin (SNB) in northern Australia extends across an area approximately the size of Tasmania. It is flanked by the resource rich Mt Isa Orogen and McArthur Basin. Limited outcrop and a dearth of drilling has hampered understanding of the evolution of the Basin, its relationship to other tectonic elements in northern Australia and its resource potential. The lack of any identified interbedded volcanic rocks within the studied sections has led us to concentrate on an extensive SHRIMP U-Pb detrital zircon geochronology program that so far exceeds 40 samples. In addition, we have undertaken SHRIMP U-Pb geochronology of authigenic xenotime. <p>Detrital zircon U–Pb maximum depositional ages (MDA) for the South Nicholson Group (SNG) are up to 100 My younger than previously reported [1]. The new MDA for the Constance Sandstone is ~1470 Ma and is the youngest so far recorded in the SNB. Additionally, it accords with an MDA for the underlying Crow Formation of ~1483 Ma. SHRIMP U–Pb xenotime analyses of authigenic overgrowths on detrital zircons from the Constance Sandstone gave an age of ~1266 Ma. This new data brackets the deposition of the SNG to between 1470 Ma and ~1266 Ma and provides the first evidence that the SNG is broadly contemporaneous with the 1500–1320 Ma Roper Group of the McArthur Basin. Using Multidimensional Scaling of the detrital age distributions has also added an extra dimension to our evolving understanding of the development of the SNB. <p>[1] Carson (2011) Queensland Geological Record 2011/03.

  • This report is the third of three reports that provide the scientific analyses and interpretations resulting from a four-year collaborative habitat mapping program undertaken within the Darwin and Bynoe Harbour region by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government Department of Environment and Natural Resources (DENR). This program was made possible through offset funds provided by the INPEX-operated Ichthys LNG Project to DENR, and co-investments from GA and AIMS.

  • AusAEM 02 Airborne Electromagnetic Survey, NT /WA, 2019-2020: TEMPEST® AEM data and conductivity estimates The accompanying data package, titled “AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey: TEMPEST® airborne electromagnetic data and conductivity estimates”, was released on 10 August 2020 by Geoscience Australia (GA), the Geological Survey of Western Australia and the Northern Territory Geological Survey. The package contains processed data from the“AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey" that was flown over the North-West part of the Northern Territory across the border and all the way to the coast into Western Australia. The regional survey was flown at a 20-kilometre nominal line spacing and entailed approximately 55,675 line kilometres of geophysical data. The survey was flown in two tranches during 2019, by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. CGG also processed the data. The survey also includes a further 6,450 line kilometres of infill flying that was funded by private exploration companies, acquired in certain blocks within the survey area. The data from these infill blocks have been processed in the same manner as the regional lines and are part of this release. Geoscience Australia commissioned the AusAEM 02 survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Western Australia. Geoscience Australia (GA) leads the EFTF program, in collaboration with the State and Territory Geological Surveys of Australia. The program is designed to investigate the potential mineral, energy and groundwater resources of Australia driving the next generation of resource discoveries. GA managed the survey data acquisition, processing, contract, the quality control of the survey and generating two of the three inversion products included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shape files for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivty-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivty-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • Seismic reflection mapping, geochemical analyses and petroleum systems modelling have increased our understanding of the highly prospective Mesoproterozoic and Paleoproterozoic source rocks across northern Australia, expanding the repertoire of exploration targets currently being exploited in Proterozoic petroleum systems. Data collected during the Exploring for the Future program have enabled us to redefine and increase the extent of regional petroleum systems, which will encourage additional interest and exploration activity in frontier regions. Here, we present a review of the Paleoproterozoic McArthur and Mesoproterozoic Urapungan petroleum supersystems, and the most up-to-date interpretation of burial and thermal history modelling in the greater McArthur Basin (including the Beetaloo Sub-basin), South Nicholson Basin and Isa Superbasin. We also present potential direct hydrocarbon indicators imaged in the 2017 South Nicholson Deep Crustal Seismic Survey that increase the attractiveness of this frontier region for hydrocarbon exploration activities. <b>Citation:</b> MacFarlane, S.K., Jarrett, A.J.M., Hall, L.S., Edwards, D., Palu, T.J., Close, D., Troup, A. and Henson, P., 2020. A regional perspective of the Paleo- and Mesoproterozoic petroleum systems of northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This report is the first of three reports that provide the scientific analyses and interpretations resulting from a four-year collaborative habitat mapping program undertaken within the Darwin and Bynoe Harbour region by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government Department of Environment and Natural Resources (DENR). This 4 year program (2014-2018) aims to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline information and developing thematic habitat maps that will underpin future marine resource management decisions. This program was made possible through offset funds provided by the INPEX-operated Ichthys LNG Project to DENR, and co-investments from GA and AIMS.

  • This package contains presentations given during NT Resources week, at the Uncovering East Tennant workshop held in Darwin on September 3, 2019, and Mining the Territory, September 5, 2019. The presentation given by Andrew Heap at the Mining the Territory forum is a high level overview of the data collection and activities of GA and it's collaborative partners across Northern Australia in conjunction with the Exploring for the Future (EFTF) program. The workshop, held in collaboration with the Northern Territory Geological Survey, outlined new mineral exploration opportunities in the East Tennant area, which lies beneath the Barkly Tableland and extends approximately 250 km east of Tennant Creek. The East Tennant area has been the focus of geochemical, geological and geophysical data acquisition as part of Geoscience Australia's Exploring for the Future program. This free event showcased new science insights for the East Tennant area and how this under-explored region has opportunities for greenfield mineral discoveries.

  • Building on newly acquired airborne electromagnetic and seismic reflection data during the Exploring for the Future (EFTF) program, Geoscience Australia (GA) generated a cover model across the Northern Territory and Queensland, in the Tennant Creek – Mount Isa (TISA) area (Figure 1; between 13.5 and 24.5⁰ S of latitude and 131.5 and 145⁰ E of longitude) (Bonnardot et al., 2020). The cover model provides depth estimates to chronostratigraphic layers, including: Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The depth estimates are based on the interpretation, compilation and integration of borehole, solid geology, reflection seismic, and airborne electromagnetic data, as well as depth to magnetic source estimates. These depth estimates in metres below the surface (relative to the Australian Height Datum) are consistently stored as points in the Estimates of Geophysical and Geological Surfaces (EGGS) database (Matthews et al., 2020). The data points compiled in this data package were extracted from the EGGS database. Preferred depth estimates were selected to ensure regional data consistency and aid the gridding. Two sets of cover depth surfaces (Bonnardot et al., 2020) were generated using different approaches to map megasequence boundaries associated with the Era unconformities: 1) Standard interpolation using a minimum-curvature gridding algorithm that provides minimum misfit where data points exist, and 2) Machine learning approach (Uncover-ML, Wilford et al., 2020) that allows to learn about relationships between datasets and therefore can provide better depth estimates in areas of sparse data points distribution and assess uncertainties. This data package includes the depth estimates data points compiled and used for gridding each surface, for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic (Figure 1). To provide indicative trends between the depth data points, regional interpolated depth surface grids are also provided for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The grids were generated with a standard interpolation algorithm, i.e. minimum-curvature interpolation method. Refined gridding method will be necessary to take into account uncertainties between the various datasets and variable distances between the points. These surfaces provide a framework to assess the depth and possible spatial extent of resources, including basin-hosted mineral resources, basement-hosted mineral resources, hydrocarbons and groundwater, as well as an input to economic models of the viability of potential resource development.

  • The Great Artesian Basin Research Priorities Workshop, organised by Geoscience Australia (GA), was held in Canberra on 27 and 28 April 2016. Workshop attendees represented a spectrum of stakeholders including government, policy, management, scientific and technical representatives interested in GAB-related water management. This workshop was aimed at identifying and documenting key science issues and strategies to fill hydrogeological knowledge gaps that will assist federal and state/territory governments in addressing groundwater management issues within the GAB, such as influencing the development of the next Strategic Management Plan for the GAB. This report summarises the findings out of the workshop.