National Groundwater Systems
Type of resources
Keywords
Publication year
Topics
-
This was the first of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop - A clear and consistent inventory of knowledge about Australia’s major hydrogeological provinces.
-
<div>The Lake Eyre surface water catchment covers around 1,200,000 km2 of central Australia, about one-sixth of the entire continent. It is one of the largest endorheic river basins in the world and contains iconic arid streams such as the Diamantina, Finke and Georgina rivers, and Cooper Creek. The Lake Eyre region supports diverse native fauna and flora, including nationally significant groundwater-dependent ecosystems such as springs and wetlands which are important cultural sites for Aboriginal Australians.</div><div><br></div><div>Much of the Lake Eyre catchment is underlain by the geological Lake Eyre Basin (LEB). The LEB includes major sedimentary depocentres such as the Tirari and Callabonna sub-basins which have been active sites of deposition throughout the Cenozoic. The stratigraphy of the LEB is dominated by the Eyre, Namba and Etadunna formations, as well as overlying Pliocene to Quaternary sediments.</div><div><br></div><div>The National Groundwater Systems Project, part of Geoscience Australia's Exploring for the Future Program (https://www.eftf.ga.gov.au/), is transforming our understanding of the nation's major aquifer systems. With an initial focus on the Lake Eyre Basin, we have applied an integrated geoscience systems approach to model the basin's regional stratigraphy and geological architecture. This analysis has significantly improved understanding of the extent and thickness of the main stratigraphic units, leading to new insights into the conceptualisation of aquifer systems in the LEB.</div><div><br></div><div>Developing the new understanding of the LEB involved compilation and standardisation of data acquired from thousands of petroleum, minerals and groundwater bores. This enabled consistent stratigraphic analysis of the major geological surfaces across all state and territory boundaries. In places, the new borehole dataset was integrated with biostratigraphic and petrophysical data, as well as airborne electromagnetic (AEM) data acquired through AusAEM (https://www.eftf.ga.gov.au/ausaem). The analysis and integration of diverse geoscience datasets helped to better constrain the key stratigraphic horizons and improved our overall confidence in the geological interpretations.</div><div><br></div><div>The new geological modelling of the LEB has highlighted the diverse sedimentary history of the basin and provided insights into the influence of geological structures on modern groundwater flow systems. Our work has refined the margins of the key depocentres of the Callabonna and Tirari sub-basins, and shown that their sediment sequences are up to 400 m thick. We have also revised maximum thickness estimates for the main units of the Eyre Formation (185 m), Namba Formation (265 m) and Etadunna Formation (180 m).</div><div><br></div><div>The geometry, distribution and thickness of sediments in the LEB is influenced by geological structures. Many structural features at or near surface are related to deeper structures that can be traced into the underlying Eromanga and Cooper basins. The occurrence of neotectonic features, coupled with insights from geomorphological studies, implies that structural deformation continues to influence the evolution of the basin. Structures also affect the hydrogeology of the LEB, particularly by compartmentalising groundwater flow systems in some areas. For example, the shallow groundwater system of the Cooper Creek floodplain is likely segregated from groundwater in the nearby Callabonna Sub-basin due to structural highs in the underlying Eromanga Basin.</div><div> Abstract submitted and presented at the 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)
-
<div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div> </div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div> </div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div> </div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>· Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>· Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>· Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>· Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>
-
This data package, completed as part of Geoscience Australia’s National Groundwater Systems (NGS) Project, presents results of the second iteration of the 3D Great Artesian Basin (GAB) and Lake Eyre Basin (LEB) (Figure 1) geological and hydrogeological models (Vizy & Rollet, 2023) populated with volume of shale (Vshale) values calculated on 2,310 wells in the Surat, Eromanga, Carpentaria and Lake Eyre basins (Norton & Rollet, 2023). This provides a refined architecture of aquifer and aquitard geometry that can be used as a proxy for internal, lateral, and vertical, variability of rock properties within each of the 18 GAB-LEB hydrogeological units (Figure 2). These data compilations and information are brought to a common national standard to help improve hydrogeological conceptualisation of groundwater systems across multiple jurisdictions. This information will assist water managers to support responsible groundwater management and secure groundwater into the future. This 3D Vshale model of the GAB provides a common framework for further data integration with other disciplines, industry, academics and the public and helps assess the impact of water use and climate change. It aids in mapping current groundwater knowledge at a GAB-wide scale and identifying critical groundwater areas for long-term monitoring. The NGS project is part of the Exploring for the Future (EFTF) program—an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The program seeks to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources, including those to support the effective long-term management of GAB water resources. This work builds on the first iteration completed as part of the Great Artesian Basin Groundwater project (Vizy & Rollet, 2022; Rollet et al., 2022), and infills previous data and knowledge gaps in the GAB and LEB with additional borehole, airborne electromagnetic and seismic interpretation. The Vshale values calculated on additional wells in the southern Surat and southern Eromanga basins and in the whole of Carpentaria and Lake Eyre basins provide higher resolution facies variability estimates from the distribution of generalised sand-shale ratio across the 18 GAB-LEB hydrogeological units. The data reveals a complex mixture of sedimentary environments in the GAB, and highlights sand body development and hydraulic characteristics within aquifers and aquitards. Understanding the regional extents of these sand-rich areas provides insights into potential preferential flow paths, within and between the GAB and LEB, and aquifer compartmentalisation. However, there are limitations that require further study, including data gaps and the need to integrate petrophysics and hydrogeological data. Incorporating major faults and other structures would also enhance our understanding of fluid flow pathways. The revised Vshale model, incorporating additional boreholes to a total of 2,310 boreholes, contributes to our understanding of groundwater flow and connectivity in the region, from the recharge beds to discharge at springs, and Groundwater Dependant Ecosystems (GDEs). It also facilitates interbasinal connectivity analysis. This 3D Vshale model offers a consistent framework for integrating data from various sources, allowing for the assessment of water use impacts and climate change at different scales. It can be used to map groundwater knowledge across the GAB and identify areas that require long-term monitoring. Additionally, the distribution of boreholes with gamma ray logs used for the Vshale work in each GAB and LEB units (Norton & Rollet, 2022; 2023) is used to highlight areas where additional data acquisition or interpretation is needed in data-poor areas within the GAB and LEB units. The second iteration of surfaces with additional Vshale calculation data points provides more confidence in the distribution of sand bodies at the whole GAB scale. The current model highlights that the main Precipice, Hutton, Adori-Springbok and Cadna-owie‒Hooray aquifers are relatively well connected within their respective extents, particularly the Precipice and Hutton Sandstone aquifers and equivalents. The Bungil Formation, the Mooga Sandstone and the Gubberamunda Sandstone are partial and regional aquifers, which are restricted to the Surat Basin. These are time equivalents to the Cadna-owie–Hooray major aquifer system that extends across the Eromanga Basin, as well as the Gilbert River Formation and Eulo Queen Group which are important aquifers onshore in the Carpentaria Basin. The current iteration of the Vshale model confirms that the Cadna-owie–Hooray and time equivalent units form a major aquifer system that spreads across the whole GAB. It consists of sand bodies within multiple channel belts that have varying degrees of connectivity' i.e. being a channelised system some of the sands will be encased within overbank deposits and isolated, while others will be stacked, cross-cutting systems that provide vertical connectivity. The channelised systemtransitions vertically and laterally into a shallow marine environment (Rollet et al., 2022). Sand-rich areas are also mapped within the main Poolowanna, Brikhead-Walloon and Westbourne interbasinal aquitards, as well as the regional Rolling Downs aquitard that may provide some potential pathways for upward leakage of groundwater to the shallow Winton-Mackunda aquifer and overlying Lake Eyre Basin. Further integration with hydrochemical data may help groundtruth some of these observations. This metadata document is associated with a data package including: • Seventeen surfaces with Vshale property (Table 1), • Seventeen surfaces with less than 40% Vshale property (Table 2), • Twenty isochore with average Vshale property (Table 3), • Twenty isochore with less than 40% Vshale property (Table 4), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity between isochore (Table 5), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity with isochore above and below (Table 6), • Seventeen upscaled Vshale log intersection locations (Table 7), • Six regional sections showing geology and Vshale property (Table 8), • Three datasets with location of boreholes, sections, and area of interest (Table 9).
-
Exploring for the Future program Showcase 2024 - Day 3 National Resource Potential Assessments theme
The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 3 - 15th August talks included: <b>Session 1 – Hydrogen opportunities across Australia</b> <a href="https://youtu.be/pA9ft3-7BtU?si=V0-ccAmHHIYJIZAo">Hydrogen storage opportunities and the role of depleted gas fields</a> - Dr Eric Tenthorey <a href="https://youtu.be/MJFhP57nnd0?si=ECO7OFTCak78Gn1M">The Green Steel Economic Fairways Mapper</a> - Dr Marcus Haynes <a href="https://youtu.be/M95FOQMRC7o?si=FyP7CuDEL0HEdzPw">Natural hydrogen: The Australian context</a> - Chris Boreham <b>Session 2 – Sedimentary basin resource potential – source rocks, carbon capture and storage (CCS) and groundwater</b> <a href="https://youtu.be/44qPlV7h3os?si=wfQqxQ81Obhc_ThE">Australian Source Rock and Fluid Atlas - Accessible visions built on historical data archives</a> - Dr Dianne Edwards <a href="https://youtu.be/WcJdSzsADV8?si=aH5aYbpnjaz3Qwj9">CO2: Where can we put it and how much will it cost?</a> - Claire Patterson <a href="https://youtu.be/Y8sA-iR86c8?si=CUsERoEkNDvIwMtc">National aquifer framework: Putting the geology into hydrogeology</a> - Dr Nadege Rollet <b>Session 3 – Towards a national inventory of resource potential and sustainable development</b> <a href="https://youtu.be/K5xGpwaIWgg?si=2s0AKuNpu30sV1Pu">Towards a national inventory of mineral potential</a> - Dr Arianne Ford <a href="https://youtu.be/XKmEXwQzbZ0?si=yAMQMjsNCGkAQUMh">Towards an inventory of mine waste potential</a> - Dr Anita Parbhakar-Fox <a href="https://youtu.be/0AleUvr2F78?si=zS4xEsUYtARywB1j">ESG mapping of the Australian mining sector: A critical review of spatial datasets for decision making</a> - Dr Eleonore Lebre View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 3 - Session 1 - <a href="https://www.youtube.com/watch?v=Ho6QFMIleuE">Hydrogen opportunities across Australia</a> 2024 Showcase Day 3 - Session 2 - <a href="https://www.youtube.com/watch?v=ePZfgEwo0m4">Sedimentary basin resource potential – source rocks, carbon capture and storage (CCS) and groundwater</a> 2024 Showcase Day 3 - Session 3 - <a href="https://www.youtube.com/watch?v=CjsZVK4h6Dk">Towards a national inventory of resource potential and sustainable development</a>
-
<div>This presentation is about the National Hydrogeological Inventory, developed as part of Geoscience Australia's national-scale groundwater research efforts in the Exploring for the Future (EFTF) program. The presentation is part of the 2024 Distinguished Geoscience Australia Lecture (DGAL) series.</div><div><br></div><div>One of Geoscience Australia's strategic drivers is to Improve understanding of Australia's groundwater systems to support sustainable management and help to secure our water resources to optimise and sustain their use. Aligned with this key objective, and as part of the EFTF program, Geoscience Australia developed and delivered the first comprehensive update to the Hydrogeology of Australia map and supporting report since first published more than 35 years ago.</div><div> </div><div>Known as the National Hydrogeological Inventory (NHI), this new online mapping application delivers consistent national-scale synthesis of hydrogeological and related data and information for the nation's 42 major groundwater provinces. Accessible via the Geoscience Australia Data Discovery Portal, the NHI provides an enhanced and updated picture of groundwater systems across Australia, giving us a broader understanding of the communities, industries, and environments that rely on access to groundwater. This presentation uncovers the story behind the development of the inventory, looking at why it was developed, the type of information it contains, and plans for further improvements as part of the new Resourcing Australia's Prosperity Initiative.</div><div> </div>
-
Geoscience Australia’s regional assessments and basin inventories are investigating Australia’s groundwater systems to improve knowledge of the nation’s groundwater potential under the Exploring for the Future (EFTF) Program and Geoscience Australia’s Strategy 2028. Where applicable, integrated basin analysis workflows are being used to build geological architecture advancing our understanding of hydrostratigraphic units and tie them to a nationally consistent chronostratigraphic framework. Here we focus on the Great Artesian Basin (GAB) and overlying Lake Eyre Basin (LEB), where groundwater is vital for pastoral, agricultural and extractive industries, community water supplies, as well as supporting indigenous cultural values and sustaining a range of groundwater dependent ecosystems such as springs and vegetation communities. Geoscience Australia continued to revise the chronostratigraphic framework and hydrostratigraphy for the GAB infilling key data and knowledge gaps from previous compilations. In collaboration with Commonwealth and State government agencies, we compiled and standardised thousands of boreholes, stratigraphic picks, 2D seismic and airborne electromagnetic data across the GAB. We undertook a detailed stratigraphic review on hundreds of key boreholes with geophysical logs to construct consistent regional transects across the GAB and LEB, using geological time constraints from hundreds of boreholes with existing and newly interpreted biostratigraphic data. We infilled the stratigraphic correlations along key transects across Queensland, New South Wales, South Australia and Northern Territory borders to refine nomenclature and stratigraphic relationships between the Surat, Eromanga and Carpentaria basins, improving chronostratigraphic understanding within the Jurassic to Cretaceous units. We extended the GAB geological framework to the overlying LEB to better resolve the Cenozoic stratigraphy and potential hydrogeological connectivity. New data and information fill gaps and refine the previous 3D hydrogeological model of the entire GAB and LEB. The new 3D geological and hydrostratigraphic model provides a framework to integrate additional hydrogeological and rock property data. It assists in refining hydraulic relationships between aquifers within the GAB and provides a basis for developing more detailed hydrogeological system conceptualisations. This is a step towards the future goal of quantifying hydraulic linkages with underlying basins, and overlying Cenozoic aquifers to underpin more robust understanding of the hydrogeological systems within the GAB. This approach can be extended to other regional hydrogeological systems. This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)
-
Australia remains underexplored or unexplored, boasting discovery potential in the mineral, groundwater, and energy resources hidden beneath the surface. These “greenfield” areas are key to Australia’s future prosperity and sustainability. Led by Geoscience Australia, Australia’s national government geoscience organisation, the Exploring for the Future program was a groundbreaking mission to map Australia’s mineral, energy, and groundwater systems in unparalleled scale and detail. The program has advanced our understanding of Australia’s untapped potential. Over the course of 8 years, the Exploring for the Future program provided a significant expansion of public, precompetitive geoscience data and information, equipping decision-makers with the knowledge and tools to tackle urgent challenges related to Australia’s resource prosperity, energy security, and groundwater supply.
-
<div>The Exploring for the Future program, led by Geoscience Australia, was a $225 million Australian Government investment over 8 years, focused on revealing Australia’s mineral, energy, and groundwater potential by characterising geology. This report provides an overview of activities, results, achievements and impacts from the Exploring for the Future program, with a particular focus on the last four years (2020-2024). </div>
-
The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>