From 1 - 10 / 15
  • Digital Elevation Model (DEM) for bathymetry of areas of interest around Australia. These models have a 30m-resolution. <b>Value: </b>Bathymetry mapping of the seafloor is vital for the protection of the coastal region, allowing for the safe navigation of shipping and improved environmental management. <b>Scope: </b>Areas include: Northern Australia, Great Barrier Reef, and Bass Strait.

  • High resolution elevation data covering an area of approximately 12,600 sq km in the Wakool-Murray catchment area. The survey is situated along the Victoria and NSW border, located between Yarrawong, Echuca, Robinvale and Moulamein and Deniliquin. A set of products were produced including classified lidar point clouds, hydro-flattened bare earth DEMs, DSMs, Canopy Height Models (CHM) and Foliage Cover Models (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.

  • Fugro Spatial Solutions (FSS) was contracted September 21st 2007 to provide LiDAR data products over the Goulburn Broken area.

  • The capture and processing of aerial lidar and coincident imagery products is required for the Nulla Basalt Geological Province in the upper Burdekin catchment of north Queensland. The Nulla Basalt Province project is the second of a series of high resolution elevation data acquisition projects required to support Geoscience Australia’s Exploring for the Future programme focussed on northern Australia. Products created in the project will primarily be used for high precision modelling of surface water movement across the landscape, identification of potential interactions with ground water resources in the region and modelling of structural geology from subtle surface expression of fault line steps indicative of historical seismic events.

  • The data covers an area of approximately 17000 sq km in the Condamine- Culgoa catchment area, located between St George, QLD and Brewarrina, NSW. A set of seamless products were produced including hydro-flattened bare earth DEMs, DSMs, Canopy Height Models (CHM) and Foliage Cover Models (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.

  • The AusBathyTopo 250m (Australia) 2023 Grid is a high-resolution depth model for Australia that replaces the Australian Bathymetry and Topography Grid, June 2009. This publication is the result of a collaborative partnership between Geoscience Australia, the Australian Hydrographic Office, James Cook University, and the University of Sydney. It has been compiled using 1582 unique data sources from multibeam echosounders, single-beam echosounders, LiDAR, 3D seismic first returns, Electronic Navigation Charts and satellite derived bathymetry alongside higher-resolution regional compilations. In particular, the map incorporates new innovations such as the use of earth observation data (satellite based) produced by Digital Earth Australia to improve shallow coastal depth modelling to present a seamless transition between land and sea. All source bathymetry data were extensively edited as 3D point clouds to remove noise, given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum. This new continental-scale grid represents decades of data collection, analysis, investment and collaboration from Australia’s seabed mapping community and is a significant improvement on the 2009 compilation. The data extends across a vast area from 92°E to 172° E and 8°S to 60° S. This includes areas adjacent to the Australian continent and Tasmania, and surrounding Macquarie Island and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands. Australia's marine jurisdiction offshore from the territory of Heard and McDonald Islands and the Australian Antarctic Territory are not included. We acknowledge the use of the CSIRO Marine National Facility (https://ror.org/01mae9353 ) in undertaking this research. The datasets used were collected by the Marine National Facility on 43 voyages (see Lineage for identification). This dataset is not to be used for navigational purposes.

  • The data covers an area of approximately 8500 sq km in the Darling river catchment area, located between Bourke, NSW and Wilcannia, NSW. A set of seamless products were produced including hydro-flattened bare earth DEMs, DSMs, Canopy Height Models (CHM) and Foliage Cover Models (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.

  • This dataset contains bathymetry (depth) products from the compilation of all available source bathymetry data within the Great Barrier Reef into a 30 m-resolution Digital Elevation Model (DEM). The Great Barrier Reef (GBR) is the largest coral reef ecosystem on Earth and stretches over 2500 km along the north-eastern Australia margin. Bathymetry mapping of this extensive reef system is vital for the protection of the GBR allowing for the safe navigation of shipping and improved environmental management. Over the past ten years, deep-water multibeam surveys have revealed the highly complex shelf-edge drowned reefs and continental slope canyons. Airborne LiDAR bathymetry acquired by the Australian Hydrographic Service cover most of the GBR reefs, with coverage gaps supplemented by satellite derived bathymetry. The Geoscience Australia-developed Intertidal Elevation Model DEM improves the source data gap along Australia’s vast intertidal zone. All source bathymetry data were extensively edited as point clouds to remove noise, given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum. The High-resolution depth model for the Great Barrier Reef - 30 m (Version 10 Nov 2020) can be downloaded as four separate but overlapping grids, with the area coverage: Great Barrier Reef A 2020 30m 10-17°S 143-147°E Great Barrier Reef B 2020 30m 16-23°S 144-149°E Great Barrier Reef C 2020 30m 18-24°S 148-154°E Great Barrier Reef D 2020 30m 23-29°S 150-156°E There is an updated “Torres Strait Bathymetry 30m 2020 - A High-resolution Depth Model (20200021C)” and can be downloaded at: <a href="http://pid.geoscience.gov.au/dataset/ga/144348">http://pid.geoscience.gov.au/dataset/ga/144348</a> It includes a grid with an area coverage: 8 – 13°S and 139 – 146°E This dataset is not to be used for navigational purposes.

  • The Murray Darling Basin Elevation Project (MDBEP) data covers the areas of the Murray Floodplain (Wakool and Edward Rivers) and Darling catchment areas (Balonne, Barwon, Bokhara, Boomi, Culgoa, Gwydir, Namoi, Macintyre, Macquarie, Mooni and Narran rivers).

  • This document details the methods and results of the project Adelaide LiDAR Classification and Derived Products¿ performed by RPS for Geoscience Australia in 2013. Lineage and Accuracy Statements for ANZLIC metadata documents for each of the project deliverables are included. Airborne LiDAR data was acquired over Adelaide in September 2008 and North Adelaide in September 2011. Differences in the level of classification reduced the ability to integrate the data into an accurate, seamless and consistent coastal DEM suitable for detailed modelling the potential impacts of coastal inundation or riverine flooding. The objective of this project was to reclassify both the 2008 and 2011 point clouds to ICSM Level 3 and derive hydro flattened 1m bare earth DEMs and; 0.25m cartographic contours, all inline with the ICSM LiDAR Acquisition Specifications. Figure 1. Adelaide LiDAR Reclassification 2012 overview map The LiDAR The LiDAR was provided as tiled LAS files. RPS did not apply any vertical or horizontal adjustments to the LiDAR and is unable to comment on the spatial accuracy of the point cloud. The deliverables were: Classified ICSM Level 2 and Level 3 point clouds in LAS format 1 metre DEMs in ESRI Binary grid format 0.25 metre contours in ESRI Shape format Break lines in ESRI Shape format. This report All files were named according to the ICSM file naming specifications.