From 1 - 3 / 3
  • The Exploring for the Future (EFTF) program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. Geoscience Australia’s EFTF Energy program is aimed at improving the understanding of the petroleum resource potential of Australia. A key to understanding resource potential and basin evolution is a reliable time frame to correlate rock units. This palynological reconnaissance study focusses on the acid-resistant organic-walled microfossils (or palynomorphs) recovered from 42 samples taken within the fully cored Lower Ordovician Nambeet Formation (1354.80–2435.04 mRT) in the Barnicarndy 1 stratigraphic well, located in the Barnicarndy Graben, Canning Basin. The lack of palynomorph recovery from the Barnicarndy Formation, Yapukarninjarra Formation, and Neoproterozoic Yeneena Basin, also intersected in this well, means that the age of those units remain undated using micropalaeontological methods. The purpose of this study is to assess the yield and preservation of recovered palynomorphs, and determine their utility for regional, and international, correlation of the Lower Ordovician sedimentary section. Although the total organic matter content of the sampled Lower Ordovician core is typically low (average ≤0.2 wt%), reflecting sediment deposition in an oxidising, open marine environment, a diverse suite of palynomorphs has been identified and includes: acritarchs (of probable algal origin); other algal microfossils (including green algae, or prasinophytes); probable cyanobacteria; cryptospores (derived from the earliest land plants); graptolites and chitinozoans (both from extinct marine groups); scolecodonts (detached elements of worm jaws); and organic-walled tubes, some of which are of either probable fungal or cyanobacterial origin. Digital images accompany this record and include examples of all of these aforementioned microfossils. Microfossil yield per sample is, mostly, low; and preservation ranges from poor, where specimens are either fragmentary and/or distorted by pyrite crystal growth, to good; and commonly both preservation states occur together within the same sample. As with the admixture of preservation states per sample, palynomorph colour, typically used as an indicator of thermal maturity of organic matter, commonly ranges from thermally mature (brown) to over mature (black), often within the same Lower Ordovician core sample. This is tempered by the fact that these observations are based, mostly, on oxidised kerogen preparations, but, the relative maturity indicators remain valid. The occurrence of acritarchs assigned to the Rhopaliophora pilata–R. palmata complex, together with Athabascaella playfordii, and Aryballomorpha grootaertii, allows correlation with assemblages previously recovered from the Nambeet Formation intersected in two petroleum exploration wells in the Canning Basin (Samphire Marsh 1, type section; and Acacia 2). These species also occur globally, with A. grootaertii recovered from sedimentary rocks in southern China and Canada that have been independently dated as Early Ordovician, late Tremadocian–early Floian (about 475–482 Ma). Conodont faunas from cores in Barnicarndy 1 record the same (late Tremadocian–early Floian) age, which enhances the utility of A. grootaertii for age dating. The dates also demonstrate that the Barnicarndy 1 well intersects some of the oldest Paleozoic sedimentary rocks in the Canning Basin. There are compositional differences between the palynological assemblages from the younger Samphire Marsh Member and underlying Fly Flat Member of the Nambeet Formation which, despite difficulties in sample processing, are genuine and reflect changes in the depositional environment. Most obvious is the record of Gloeocapsomorpha prisca and ?Eomerismopedia maureeniae, both of probable cyanobacterial affinity, with in situ occurrences in the Lower Ordovician Samphire Marsh Member. Earlier studies suggested that G. prisca was confined to younger (Middle) Ordovician palynological assemblages in the Canning Basin, and its common abundance was used as a biozone marker, but the occurrences reported here and in unpublished studies, have shown that this is no longer applicable. In younger Ordovician formations in the Canning Basin (notably the upper Goldwyer Formation), and globally, G. prisca is an important organism contributing to the hydrocarbon potential of Paleozoic marine source rocks. If present in greater abundance elsewhere in the basin, it could increase the petroleum prospectivity of the Nambeet Formation. A distinctively shaped acritarch, of probable algal origin, assigned to the genus Dactylofusa is restricted to an assemblage from the Fly Flat Member, and may be useful for future basinal biozone correlation. Most samples from the Samphire Marsh Member contain early land-plant spores, of probable bryophyte affinity, that sometimes occur together with irregularly-shaped spore clusters, likely derived from aeroterrestrial charophyte algae; both of which are collectively known as cryptospores. In addition, Grododowon orthagonalis, superficially similar to E. maureeniae and recorded in some samples from the Samphire Marsh Member, is also considered to be of charophyte algal origin. The cryptospores include the species Dyadospora murusattenuata, Tetraplanarisporites sp., and Laevolancis divellomedium. Collectively, these cryptospores are important as they herald the first emergence of plants onto wetlands during the Early Ordovician; and being of late Tremadocian–early Floian age, they are amongst the oldest land-plant spores known in Australia and globally. The record of cryptospores from Barnicarndy 1 enhances those recently reported from the Nambeet Formation in Samphire Marsh 1, and from the lower Goldwyer Formation in Theia 1. Locally, the cryptospore record demonstrates a supply of terrestrial material into the marine environment during deposition of the Samphire Marsh Member. Globally, records of these cryptospores contribute to the understanding of the evolution and geographic distribution of the earliest land flora. Inevitably, there are microfossils found in this study that could be described as new species, and a detailed systematic study of all fossil groups is recommended to realise their utility for zonal correlation and age dating. The palynological data presented here provide complementary information to the conodont age dating, organic petrological, and organic geochemical studies conducted on the Barnicarndy 1 core. Collectively, these studies contribute to a better understanding of the depositional history and hydrocarbon prospectivity of the Canning Basin.

  • During 2021–2024 Geoscience Australia conducted regional seismic mapping across the offshore Otway Basin that extended into the frontier deep-water region. This work was part of a broader pre-competitive study undertaken in support of petroleum exploration. Seismic horizons and faults were interpreted on three regional data sets, including: over 18 000 line-km of new and reprocessed data compiled for the 2020 offshore Otway Basin seismic program; over 40 000 line-km of legacy 2D seismic data; and the Otway 3D Megamerge dataset. This digital dataset (publication date 9 September 2024) updates and replaces a previously released dataset (publication date 16 May 2022). This updated dataset includes 8 surface grids and 11 isochron grids generated from the following seismic horizons (in ascending stratigraphic order); MOHO (Mohorovičić discontinuity), TLLCC (top laminated lower continental crust), Base (base Crayfish Supersequence), EC2 (base Eumeralla Supersequence), LC1 (base Shipwreck Supersequence), LC1.2 (base LC1.2 Sequence), LC2 (base Sherbrook Supersequence), and T1 (base Wangerrip Supersequence). Fault polygons created for all surfaces (except for MOHO, TLLCC, and LC1.2) are also included in the dataset. Maps generated from the dataset depict deep-water Cretaceous depocentres, and trends in crustal thinning and rifting during the Cretaceous. This revised dataset has underpinned updates to regional structural elements, including a revision of the boundary between the Otway and Sorell basins.

  • As part of Geoscience Australia's Exploring for the Future program, the East Tennant region, which is centred on the Barkly Roadhouse in the Northern Territory, was identified as having favourable geological and geophysical indicators of mineral systems potential. Potentially prospective stratigraphy in the East Tennant region is completely concealed beneath Mesoproterozoic to Quaternary cover sequences. Prior to 2020 basement rocks in the East Tennant region were only known from a handful of legacy boreholes, supported by geophysical interpretation. In order to test geophysical interpretations and obtain additional samples of basement rocks for detailed analysis, a stratigraphic drilling campaign was undertaken in the East Tennant region as part of the MinEx CRC’s National Drilling Initiative. Ten stratigraphic boreholes were drilled through the cover sequences and into basement for a total of nearly 4000 m, including over 1500 m of diamond cored basement rocks to be used for scientific purposes. Inorganic geochemical samples from East Tennant National Drilling Initiative boreholes were taken to characterise cover and basement rocks intersected during drilling. Two sampling approaches were implemented based on the rocks intersected: 1) Borehole NDIBK04 contained localised sulphide mineralisation and elevated concentrations of several economically-significant elements in portable X-ray fluorescence data. In order to understand the geochemical variability and distribution of elements important for mineral system characterisation, the entire basement interval was sampled at nominal one metre intervals. This spacing was reduced to between 0.5 and 0.25 m from 237 m to 263 m to better understand a more intense zone of mineralisation, and 2) Samples from boreholes NDIBK01, NDIBK02, NDIBK03, NDIBK05, NDIBK06, NDIBK07, NDIBK08, NDIBK09 and NDIBK10 were selected to capture lithological and geochemical variability to establish bulk rock geochemical compositions for further interpretation. Attempts were made to sample representative, lithologically consistent intervals. A total of 402 samples were selected for analysis. Sample preparation was completed at Geoscience Australia and Bureau Veritas, with all analyses performed by Bureau Veritas in Perth. All samples were submitted for X-ray fluorescence (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), FeO determination, and loss on ignition (LOI). Samples from borehole NDIBK04 also underwent total combustion C and S, and Pb collection fire assay by ICP-MS for determination of Au, Pt and Pd concentrations. This data release presents inorganic geochemistry data acquired on rock samples from the ten East Tennant National Drilling Initiative boreholes.