From 1 - 10 / 499
  • Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.

  • The Australian Solid Earth and Environment Grid (SEEGrid) is an eResearch infrastructure established to link diverse and distributed datasets in the geosciences, enable seamless interoperability between these, and undertake remote data processing. We present an integration between the GPlates plate-tectonic geographic information system and SEEGrid. Such a linkage is for the first time providing the necessary computational aids for abstracting an enormous level of complexity required for frontier solid-Earth research, in particular 4D metallogenesis. We present a continental reconstruction case study involving a proterozoic link between the greater Northern and Southern Australian cratons by combining evidence from several data sets. Faults are extracted from SEEGrid via Web Feature Services, and are used in conjunction with gravity anomaly data to test competing spatial alignment models of the reconstructed cratons. Additional information obtained from palaeomagnetic poles, granite geochemistry, geochronology, age-dated igneous provinces and other geophysics datasets can be used to further constrain the reconstruction. The metallogenic consequences of the best-fit reconstruction are profound, since they raises the possibility that the mineral systems hosting the giant Olympic dam, Broken Hill and Mt Isa could be linked in a particular geometry, resulting in a revised metallogenic map. The flexibility and extensibility of this spatio-temporal data analysis platform lends itself to a wide range of use-cases, including linking high-performance geodynamic modelling to kinematic reconstructions, creating the framework for future 3D and 4D metallogenic maps.

  • The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. In 2011, twenty-nine areas in eight offshore basins are being released for work program bidding. Closing dates for bid submissions are either six or twelve months after the release date, i.e. 13 October 2011 and 12 April 2012, depending on the exploration status in these areas and on data availability. The 2011 Release is the largest since the year 2000 with all 29 areas, located in Commonwealth waters offshore Northern Territory, Western Australia, Victoria and Tasmania, covering approximately 200,000 km2. The producing hydrocarbon provinces of the Carnarvon, Otway and Gippsland basins are represented by gazettal blocks that are located close to existing infrastructure and are supported by extensive open file data-sets. Other areas that are close to known oil and gas discoveries lie in the Caswell Sub-basin (eastern Browse Basin) and on the Ashmore Platform (north-western Bonaparte Basin). A particular aspect of the 2011 Release is provided by 13 areas in underexplored regions offshore Northern Territory and Western Australia all of which range from 100 to 280 graticular blocks in size. These areas, located in the Money Shoal; outer Browse, Roebuck, north-eastern Carnarvon, Southern Carnarvon and North Perth basins, offer new opportunities for data-acquisition and regional exploration. The release of three large areas in the Southern Carnarvon and North Perth basins is supported by new data acquired and interpreted by Geoscience Australia as part of the Offshore Energy Security Program, of which selected results are being presented at this year's conference.

  • We report four lessons from experience gained in applying the multiple-mode spatially-averaged coherency method (MMSPAC) at 25 sites in Newcastle (NSW) for the purpose of establishing shear-wave velocity profiles as part of an earthquake hazard study. The MMSPAC technique is logistically viable for use in urban and suburban areas, both on grass sports fields and parks, and on footpaths and roads. A set of seven earthquake-type recording systems and team of three personnel is sufficient to survey three sites per day. The uncertainties of local noise sources from adjacent road traffic or from service pipes contribute to loss of low-frequency SPAC data in a way which is difficult to predict in survey design. Coherencies between individual pairs of sensors should be studied as a quality-control measure with a view to excluding noise-affected sensors prior to interpretation; useful data can still be obtained at a site where one sensor is excluded. The combined use of both SPAC data and HVSR data in inversion and interpretation is a requirement in order to make effective use of low frequency data (typically 0.5 to 2 Hz at these sites) and thus resolve shear-wave velocities in basement rock below 20 to 50 m of soft transported sediments.

  • Inland sulfidic soils have recently formed throughout wetlands of the Murray River floodplain associated with increased salinity and river regulation (Lamontagne et al., 2006). Sulfides have the potential to cause widespread environmental degradation both within sulfidic soils and down stream depending on the amount of carbonate available to neutralise acidity (Dent, 1986). Sulfate reduction is facilitated by organic carbon decomposition, however, little is known about the sources of sedimentary organic carbon and carbonate or the process of sulfide accumulation within inland sulfidic wetlands. This investigation uses stable isotopes from organic carbon (13C and 15N), inorganic sulfur (34S) and carbonate (13C and 18O) to elucidate the sources and cycling of sulfur and carbon within sulfidic soils of the Loveday Disposal Basin.

  • Extended abstract version of short abstract accepted for conference presentation GEOCAT# 73701

  • In the 2011/12 Budget, the Australian Government announced funding of a four year National CO2 Infrastructure Plan (NCIP) to accelerate the identification and development of suitable long term CO2 storage sites, within reasonable distances of major energy and industrial emission sources. The NCIP funding follows on from funding announced earlier in 2011 from the Carbon Storage Taskforce through the National Carbon Mapping and Infrastructure Plan and previous funding recommended by the former National Low Emissions Coal Council. Four offshore sedimentary basins and several onshore basins have been identified for study and pre-competitive data acquisition.

  • Summary of GA's plans for marine seismic and reconnaissance surveys off southwestern Australia in 2008/09 as part of the Offshore Energy Security Program

  • Open Geospatial Consortium (OGC) web services offer a cost efficient technology that permits transfer of standardised data from distributed sources, removing the need for data to be regularly uploaded to a centralised database. When combined with community defined exchange standards, the OGC services offer a chance to access the latest data from the originating agency and return the data in a consistent format. Interchange and mark-up languages such as the Geography Markup Language (GML) provide standard structures for transferring geospatial information over the web. The IUGS Commission for the Management and Application of Geoscience Information (CGI) has an on-going collaborative project to develop a data model and exchange language based on GML for geological map and borehole data, the GeoScience Mark-up Language (GeoSciML). The Australian Government Geoscience Information Committee (GGIC) has used the GeoSciML model as a basis to cover mineral resources (EarthResourceML), and the Canadian Groundwater Information Network (GIN) has extended GeoSciML into the groundwater domain (GWML). The focus of these activities is to develop geoscience community schema that use globally accepted geospatial web service data exchange standards.

  • Australia has a rich uranium endowment. Amongst other favourable geological conditions for the formation of uranium deposits, such as the presence of intracratonic sedimentary basins, Australia is host to widespread uranium-rich felsic igneous rocks spanning a wide range of geological time. Many known uranium deposits have an empirical spatial relationship with such rocks. While formation of some mineral systems is closely associated with the emplacement of uranium-rich felsic magmas (e.g., the super-giant Olympic Dam deposit), most other systems have resulted from subsequent low temperature processes occurring in spatial proximity to these rocks. Approximately 91% of Australia's initial in-ground resources of uranium occur in two main types of deposits: iron-oxide breccia complex deposits (~ 75%) and unconformity-related deposits (~ 16%). Other significant resources are associated with sandstone- (~ 5%) and calcrete-hosted (~ 1%) deposits. By comparison, uranium deposits associated with orthomagmatic and magmatic-hydrothermal uranium systems are rare. Given the paucity of modern exploration and the favourable geological conditions with Australia, there remains significant potential for undiscovered uranium deposits. This paper discusses mineral potential of magmatic- and basin-related uranium systems.