From 1 - 2 / 2
  • <div><strong>Output Type: </strong>Exploring for the Future Extended abstract</div><div><br></div><div><strong>Short Abstract: </strong>The increasing demand for mineral, energy and groundwater resources to support sustainable development and achieve net zero carbon targets in the face of climate change necessitates a deeper understanding of Earth’s resources and geological processes. Traditional 2D geological maps, while valuable for synthesizing and communicating geoscientific information, are limited in depicting the full extent and depth of geological units, which is crucial for effective resource exploration and management. Here, we present the Layered Geological Map of Australia (LGMA) dataset, the world’s first layered geological model at the continental scale. It integrates diverse geological, geochemical and geophysical datasets to create a comprehensive, machine-readable 3D geological framework spanning Australia's surface and subsurface. The dataset contains approximately 185,000 polygons representing the extent of around 7,600 geological units grouped into five chronostratigraphic layers corresponding to major Era boundaries (Cenozoic, Mesozoic, Paleozoic, Neoproterozoic and pre-Neoproterozoic). Standardised and consistent chrono-lithostratigraphy for each geological unit were captured through the Australian Stratigraphic Units Database (ASUD) and linked to the layered geology map to provide an attribute-rich dataset that can be queried and visualised in Geographic Information System (GIS) software or 3D modelling packages. The LGMA represents a significant advancement in Australian geoscience towards a 3D geological model of Australia, offering a foundational resource for academia, government, and industry alike.&nbsp;</div><div><br></div><div><strong>Citation: </strong>Sanchez, G., Liu, S., Steward, A.J., Bonnardot, M.A., Beyer, E.E., Czarnota, K., Highet, L.M., Woods, M., Brown, C.E., Clark, A., Connors, K., Wong, S. &amp; Cloutier, J., 2024. First continental layered geological map of Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149391</div>

  • <div>As part of the Exploring For The Future (EFTF) program, the Australia’s Future Energy Resources (AFER) project has investigated the potential of energy resource commodities in the Pedirka/western Eromanga basins region targeting conventional and unconventional hydrocarbons as well as evaluating the suitability of sedimentary sections to store carbon dioxide.</div><div>The interpretation of new biostratigraphic and reprocessed seismic data provided new insights into the regional geology of this previously explored region. The Permian, Triassic and Jurassic depositional history of the study area is largely recorded by extensive fluvial-lacustrine sediments, including changes from braided to meandering river systems and sustained periods of flood-plain environments in which thick sequences of coal-bearing strata developed. During the Cretaceous, expanding shallow marine environments were established in the western part of the Pedirka/western Eromanga region.</div><div>Age-control obtained from palynological analysis and the mapping of key seismic horizons yielded an improved understanding of the extent and character of unconformities which define breaks and changes in depositional processes. Results from new regional stratigraphic correlations initiated a comprehensive review of previously established basin definitions in the greater Pedirka/western Eromanga area. </div><div>While confirming the stacked nature of these basins which hold sedimentary records from the early Paleozoic to the Late Cretaceous, changes to stratigraphic basin boundaries have been applied to more correctly reflect the impact of unconformity related depositional breaks. As a result, the Lower and Middle Triassic Walkandi Formation is now assigned to the upper section of the Pedirka Basin, while the Upper Triassic Peera Peera Formation represents commencement of deposition in the western Eromanga Basin, thereby abandoning the recognition of the Simpson Basin as a separate Triassic depocenter.&nbsp;</div><div><br></div><div><br></div>