From 1 - 10 / 28
  • Note: A more recent version of this product is available. This dataset contains the high voltage electricity transmission lines that make up the electricity transmission network in Australia. For government use only. Access through negotiation with Geoscience Australia

  • Note: A more recent version of this product is available. This point dataset contains the major power stations in Australia including all those that feed into the electricity transmission network.

  • The dataset contains spatial locations, in point format, of the Australian High Court, Australian Federal Courts and the Australian Magistrates Courts.

  • This point dataset contains the major airport control towers in Australia.

  • This point dataset contains ferry terminals in Australian waters that include infrastructure facilities for maritime vessels to load and unload passengers and/or vehicles.

  • PLEASE NOTE: There is a more recent version of this product which can be accessed via the link on the right hand pane. It has been widely recognised that Light Detection And Ranging (LiDAR) data is a valuable resource for estimating the geometry of natural and artificial features. While the LiDAR point cloud data can be extremely detailed and difficult to use for the recognition and extraction of three dimensional objects, the Digital Elevation Model and Digital Surface Model are useful for rapidly estimating the horizontal extent of features and the height variations across those features. This has utility in describing the characteristics of buildings or other artificial structures. LiDAR is an optical remote sensing technology that can measure the distance from the sensor to a target area by illuminating the target area with light, often using pulses from a laser scanner. LiDAR has many applications in a broad range of fields, including aiding in mapping features beneath forest canopies, creating high resolution digital elevation and surface models. A Digital Surface Model (DSM) represents the earth's surface and includes all objects on it, while the Digital Elevation Model (DEM) represents the bare ground surface without any natural or artificial objects such as vegetation, structures and buildings. The Building Geometry Model (BGM) application is a Python-based software system, used to execute ArcGIS geoprocessing routines developed by Geoscience Australia, which can derive the horizontal and vertical extents and geometry information of building and other elevated features from LiDAR data. The Building Geometry Model algorithms were developed in response to the availability of LiDAR data for the development of exposure information for natural hazard risk analysis. The LiDAR derivatives were used to estimate building footprint areas, inter-storey heights across areas occupied by buildings, and eventually an estimate of gross floor area of different types of buildings. The design and development of the BGM application started in February 2012 as part of a natural hazard risk analysis project in the Philippines. Many of the examples of interface usage in this document contain references to locations and terms used in the Philippines. However, the BGM application has been designed to process data regardless of its geographic location. The object-oriented programming techniques and design patterns were used in the software design and development. In order to provide users with a convenient interface to run the application on Microsoft® Windows, a Python-based Graphical User Interface (GUI) was implemented in March 2012 and significantly improved in the subsequent months. The application can be either run as a command-line program or start via the GUI. The BGM application is currently benchmarked as Version 1.0 as it is still under development. This document is a user guide to the BGM GUI. It describes the main User Interface (UI) components, functionality and procedures for running the BGM processes via GUI.

  • GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs. Data is arranged within specific themes. All data is based on the GDA94 coordinate system. The 250K transport data used in the National Map base map are seamless national datasets and cover the whole of Australia. The transport datasets have been updated since the GEODATA TOPO 250K Series 3 release.

  • This point dataset contains the major desalination plants in Australia.

  • This point dataset contains offshore Oil and Gas Platforms located in Australian waters that include infrastructure facilities for the extraction, processing and/or storage of oil and natural gas.

  • The datasets contain spatial locations in point format as a representation of embassies, high commissions and consulate facilities/missions in Australia.