Authors / CoAuthors
Northey, J.E. | Smith, M.L. | Clark, A. | Hostetler, S. | Parige, R.H. | McPherson, A.A. | Clarke, J.D.A.
Abstract
This report presents key results from the Western Davenport study conducted as part of Exploring for the Future (EFTF), an Australian Government-funded geoscience data and information acquisition program. The Western Davenport (WD) investigation used existing geological and hydrogeological data and new AEM data to develop a 3D hydrostratigraphic model of the central part of the study area. This was augmented by existing and newly acquired hydrogeological and hydrochemistry data to improve the understanding of groundwater in the area. The collection and interpretation of these datasets have enabled a correlation between hydrostratigraphic units in the Wiso and Georgina basins in the WD area. The hydrochemistry data shows that the central zone of the WD is characterised by good-quality groundwater (<1000 mg/L total dissolved solids), with the newly drilled bores identifying areas of low-salinity groundwater. These initial hydrochemistry results suggest groundwater in the WD could support irrigated agriculture. The hydrochemistry data has identified three zones of potentially higher recharge. The groundwater stable isotope dataset suggests that there is minimal evaporation of water prior to recharge and that groundwater recharge only occurs following heavy rainfall events. This preliminary information suggests recharge to groundwater is dominated by episodic recharge from floodouts and creeks rather than direct infiltration across the WD area from large rainfall events. However, more data are needed to better define the role of floodouts in recharge to the groundwater system and to determine the contribution of creek beds versus floodouts to recharge. Given the aridity of the area and the variable nature of recharge events, managed aquifer recharge could increase the security of groundwater resources in the area. The regolith mapping presented can assist in better understanding the surface and near-surface environments, and their influence on hydrogeological processes. This provides a tool with which to begin identifying potential areas for enhancing natural recharge processes to supplement existing groundwater resources. This mapping was possible because of the increasing availability of higher resolution digital elevation, airborne radiometric and Landsat satellite remotely sensed data. The improved understanding of geology and hydrogeology, coupled with managed aquifer recharge mapping undertaken as part of the EFTF program, provides new information to support groundwater management in the WD area.
Product Type
document
eCat Id
133989
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
- Contact instructions
- MEG
Resource provider
Digital Object Identifier
Keywords
- theme.ANZRC Fields of Research.rdf
-
- EARTH SCIENCES
- ( Project )
-
- EFTF
- ( Project )
-
- Exploring For The Future
-
- Western Davenport
-
- Published_External
Publication Date
2021-03-10T04:00:50
Creation Date
Security Constraints
Legal Constraints
Status
Purpose
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
2020/056
Lineage
This study was completed under the Exploring for the Future initiative, as part of the Southern Stuart Corridor Groundwater component. The study uses newly acquired AEM data with new and existing geological, hydrogeological and hydrochemical data, to improve the understanding of groundwater in the Western Davenport area.
Parent Information
Extents
[-25.4234, -17.8324, 129.7266, 137.417]
Reference System
Spatial Resolution
Service Information
Associations
Source Information