Authors / CoAuthors
Abstract
This Clarence-Moreton Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The formation of the Clarence-Moreton Basin initiated during the Middle Triassic due to tectonic extension. This was followed by a prolonged period of thermal cooling and relaxation throughout the Late Triassic to the Cretaceous. Deposition of a non-marine sedimentary succession occurred during this time, with the Clarence-Moreton Basin now estimated to contain a sedimentary thickness of up to 4000 m. There were three main depositional centres within the basin, and these are known as the Cecil Plain Sub-basin, Laidley Sub-basin and Logan Sub-basin. The Clarence-Moreton Basin sediments were originally deposited in non-marine environments by predominantly northward flowing rivers in a relatively humid climate. The sedimentary sequences are dominated by a mixed assemblage of sandstone, siltstone, mudstone, conglomerate and coal. Changing environmental conditions due to various tectonic events resulted in deposition of interbedded sequences of fluvial, paludal (swamp) and lacustrine deposits. Within the Clarence-Moreton Basin, coal has been mined primarily from the Jurassic Walloon Coal Measures, including for the existing mines at Commodore and New Acland. However, coal deposits also occur in other units, such as the Grafton Formation, Orara Formation, Bundamba Group, Ipswich Coal Measures, and Nymboida Coal Measures. Overlying the Clarence-Moreton Basin in various locations are Paleogene and Neogene volcanic rocks, such as the Main Range Volcanics and Lamington Volcanics. The thickness of these volcanic rocks is typically several hundred metres, although the maximum thickness of the Main Range Volcanics is about 900 m. Quaternary sediments including alluvial, colluvial and coastal deposits also occur in places above the older rocks of the Clarence-Moreton Basin.
Product Type
document
eCat Id
148717
Contact for the resource
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
- Contact instructions
- MEG
Resource provider
Digital Object Identifier
Keywords
- theme.ANZRC Fields of Research.rdf
-
- HydrogeologyECOLOGYLand Use and Environmental PlanningPHYSICAL GEOGRAPHY AND ENVIRONMENTAL GEOSCIENCEBasin AnalysisEnvironmental ManagementEARTH SCIENCESGEOLOGYENVIRONMENTAL SCIENCESStratigraphy (incl. Biostratigraphy and Sequence Stratigraphy)Sedimentology
- ( Project )
-
- National Groundwater Sytems
- ( Theme )
-
- Groundwater
- ( Theme )
-
- Exploring for the Future
- ( Theme )
-
- National Hydrogeological Inventory
-
- Published_External
Publication Date
2023-09-28T07:21:37
Creation Date
Security Constraints
Legal Constraints
Status
completed
Purpose
A thematic summary of the Clarence-Moreton Basin. Part of a compendium of consistently compiled summaries that comprise the National Hydrogeological Inventory
Maintenance Information
asNeeded
Topic Category
geoscientificInformation inlandWaters environment
Series Information
Lineage
This document for the National Hydrogeological Inventory was created through the compilation and analysis of various national geospatial datasets and a range of supporting scientific and technical literature. In most cases, the spatial boundary (polygon) for the region was sourced from the Geoscience Australia Geological Provinces 2018 dataset. The geospatial data reported for the region of interest were selected by spatial queries of the region's polygon using Geographic Information System (GIS) applications. A variety of national-scale datasets were assessed for each region, with these data relevant to the study of groundwater, hydrogeology and related social, cultural or environmental characteristics. These data are published by various organisations (mostly Australian Government entities) and include fundamental Australian datasets such as the National Groundwater Information System (NGIS), National Aquifer Framework, Atlas of Groundwater Dependent Ecosystems and the Collaborative Australian Protected Areas Database (CAPAD). A complete list of all data used to develop the National Hydrogeological Inventory, and the various data processing and analysis methods used, will be released as part of a future Geoscience Australia publication focused on the hydrogeological inventory methodology. The document also contains written summary information about the geology, hydrogeology and related features of the region of interest. These narrative summaries were compiled by Geoscience Australia researchers based on literature review and analysis of a range of scientific and technical publications about the region. The reports use similar document templates to ensure the consistency of information provided across the entire Australian continent.
Parent Information
National Hydrogeology Inventory
UUID - 77a96e76-a39e-483d-976b-4137a79141f8,
eCat ID - 148897
Extents
[-30.1585, -26.4394, 151.0531, 153.6119]
Reference System
Spatial Resolution
Service Information
Associations
Source Information