Authors / CoAuthors
Edwards, D.S. | Spaak, G. | Grosjean, E. | Boreham, C.J. | Zumberge, A. | Zumberge, J. | Rocher, D. | Summons, R. | Grice, K. | Mory, A.
Abstract
<p>The Paleozoic Canning Basin is a large (~720 000 km2) frontier province with several proven petroleum systems. Recent oil production from the Ungani field on the southern edge of the Fitzroy Trough has boosted the small-scale production of crude oil and gas discovered in the 1980s on the Lennard Shelf and flanking terraces (e.g. Blina, Boundary, Lloyd, Sundown, West Kora, West Terrace). Determining the paleo-depositional environments within the epicontinental seaway is essential to characterise source rock formation and distribution, and hence assist future exploration strategies.</p> <p>This study of diagnostic biomarker hydrocarbons derived from the coloured carotenoid pigments of photosynthetic organisms (including plants, algae, cyanobacteria and photosynthetic bacteria) was designed to extend the geochemistry of the Ordovician-, Middle to Late Devonian- and Early Carboniferous-sourced oils of the basin published by Edwards et al. (2013) and Spaak et al. (2017, 2018), and implemented by GeoMark Research. The focus was to clarify the paleo-depositional environment of their marine source rocks and the extent of water stratification, and to expand upon the diversity of the contributing organic matter. The oils on the Lennard Shelf and those on the southern side of the Fitzroy Trough (e.g. Ungani and Dodonea 1) preserve a diverse range of biomarkers, including both saturated and aromatic C40 carotenoid-derived compounds (Figure 1) due to minimal secondary alteration. All analysed oils contain the saturated biomarker beta-carotane, derived from algae and cyanobacteria that flourish in sunlit oxygenated water. In addition, the oils also contain aromatic carotenoids produced by photosynthetic green sulphur bacteria, which inhabit the photic zone of euxinic water columns (e.g. Summons & Powell, 1986; French et al., 2015). Paleorenieratane is the dominant C40 aromatic carotenoid in the Ordovician (Dodonea 1, Pictor) and Late Devonian-sourced oils (Blina 1, 2, 4 and Janpam North 1; Figure 1). Oils on the Lennard Shelf generated by Lower Carboniferous source rocks have variable distributions of carotenoids with isorenieratane either in similar concentration to paleorenieratane (Point Torment 1, Sundown 2), absent (West Kora 1) or, in the case of Terrace 1, in lower abundance relative to paleorenieratane. Paleorenieratane, isorenieratane and renieratane are absent in oils from Wattle 1 ST1 and Mirbelia 1. Chlorobactane, also derived from green sulphur bacteria, is present in many of the analysed oils (and is the dominant peak in Point Torment 1), whereas okenane (derived from purple sulphur bacteria) was not detected. The exception is the Late Ordovician (Sandbian) Cudalgarra 1 oil that contains a low concentration of okenane, and in which isorenieratane predominates over paleorenieratane. The aromatic carotenoid distribution in oil from Ungani 2 is similar to those from both Terrace 1 and Blina (Figure 1).</p> <p>The association of these saturated and aromatic carotenoids in Paleozoic Canning Basin oils provides evidence for long-term restricted circulation and the development of shallow chemoclines in an epicontinental seaway centred along the Fitzroy Trough and Gregory Sub-basin in which oxygenated surface water frequently overlaid deeper, anoxic, sulphidic (euxinic) water also within the photic zone.</p> <p>REFERENCES Edwards, D.S., Boreham, C.J., Chen, J., Grosjean, E., Mory, A.J., Sohn, J., Zumberge, J.E., 2013. Stable carbon and hydrogen isotopic compositions of Paleozoic marine crude oils from the Canning Basin: comparison with other west Australian crude oils. In: Keep, M., Moss, S. (Editors), The Sedimentary Basins of Western Australia IV, Perth, WA. Edwards, P., Streitberg, E., 2013. Have we deciphered the Canning? Discovery of the Ungani oil field. In: Keep, M., Moss, S. (Editors), The Sedimentary Basins of Western Australia IV, Perth, WA. French, K.L., Rocher, D., Zumberge, J.E., Summons, R.E., 2015. Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13, 139–151, 10.1111/gbi.12126. Spaak, G., Edwards, D.S., Allen, H.J., Grotheer, H., Summons, R.E., Coolen, M.J.L., Grice, K., 2018. Extent and persistence of photic zone euxinia in Middle–Late Devonian seas – insights from the Canning Basin and implications for petroleum source rock formation. Marine and Petroleum Geology, 93, 33–56. Spaak, G., Edwards, D.S., Foster, C.B., Pagès, A., Summons, R.E., Sherwood, N., Grice, K., 2017. Environmental conditions and microbial community structure during the Great Ordovician Biodiversification Event; a multi-disciplinary study from the Canning Basin, Western Australia. Global and Planetary Change, 159, 93–112. Summons, R.E., Powell, T.G., 1986. Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology. Nature 319, 763–765.</p>
Product Type
document
eCat Id
122999
Contact for the resource
Point of contact
Resource provider
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
- ( Theme )
-
- Paleozoic Canning Basin
- ( Theme )
-
- Paleo-reconstruction
- ( Theme )
-
- Canning Basin
-
- Published_External
Publication Date
2019-03-27T04:18:14
Creation Date
2018-09-17T00:00:00
Security Constraints
Legal Constraints
Status
accepted
Purpose
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
Lineage
Not supplied
Parent Information
Extents
[-22, -16, 119, 128]
Reference System
Spatial Resolution
Service Information
Associations
Source Information