Authors / CoAuthors
Wilford, J.
Abstract
The Murray Basin is a saucer-shaped basin with flat-lying Cenozoic sediments up to approximately 600 m thickness (Brown and Stephenson, 1991). Constraints on the thickness of the Murray Basin have been compiled from: drillholes, reflection seismic profile interpretations, refraction seismic profiles and depth to magnetic basement estimates (Target_type.pdf). Target depths were sourced from Geoscience Australia, the national Groundwater Information System database (Http://www.bom.gov.au/water/groundwater/ngis/), the Geological Survey of Victoria (http://earthresources.vic.gov.au/earth-resources/geology-of-victoria/geological-survey-of-victoria) and the Geological Survey of South Australia (http://www.minerals.statedevelopment.sa.gov.au/geoscience/geological_survey). In addition, some of the magnetic depth estimates used data from McLean (2010). To constrain the thickness of Cenozoic cover where sediments were either absent or very thin we generated shallow-depth values in areas with post-Cenozoic geology and high topographic relief. In all, 5436 depth estimates were compiled (Target_depths.xlsx). The input datasets have been used to generate two predictive models of the thickness of Cenozoic sediments within the Murray Basin. The first model uses kriging of the depth estimates to generate a gridded surface using a local-area linear variogram model as a means of interpolating between constraints (Murray_Basin_kriging_Cenozoic_thickness.pdf; Murray_Basin_krig.tif -floating value grid). The second model uses a machine-learning approach where correlations between 17 supplementary datasets and 5436 depth estimates are used to derive a predictive model. We used a supervised learning algorithm known as Gaussian Process (GP) to generate the integrated predictive model. Gaussian Process is a non-parametric probabilistic approach to learning. It uses kernel functions to measure the similarity between points and predict values not seen from the training data (see Read_Me_GP.rtf). The supplementary datasets used in the model are listed in Table 1 and model variable settings can be found in read_me.rtf (Murray_Basin_GP_Cenozoic_thickness.pdf; Murray_Basin_GP_model.tif -floating value grid). Both approaches delineate the overall structure, geometry and thickness of the Murray Basin. The advantage of the machine learning approach is that it learns relationships between the depth and supplementary datasets which allow predictions in areas with limited constraints. References Brown, C. M. and Stephenson, A. E., 1991, Geology of the Murray Basin, southeastern Australia, Canberra, Bureau of Mineral Resources Bulletin 235, 430 p. McLean, M.A., 2010. Depth to Palaeozoic basement of the Gold Undercover region from borehole and magnetic data. GeoScience Victoria Gold Undercover Report 21. Department of Primary Industries, Victoria. Table 1. Supplementary input datasets used in predictive estimation of Murray Basin thickness, utilising a machine learning method Covariates* Description 1 Latitude Gridded latitude values 2 Longitude Gridded longitude values 3 Elevation Terrain elevation – 90m shuttle DEM 4 Distance from bedrock Euclidean distance from outcrop geology units older than Cenozoic 5 Gravity Terrain and isostatic corrected Bouguer gravity 6 Gravity 1228 Upward continued gravity at 1228 metres 7 Gravity 2407 Upward continued gravity at 2407 metres 8 Gravity 6605 Upward continued gravity at 6605 metres 9 Gravity 18124 Upward continued gravity at 18124 metres 10 Gravity 35524 Upward continued gravity at 35524 metres 11 Gravity 49734 Upward continued gravity at 49734 metres 12 Gravity 97479 Upward continued gravity at 97479 metres 13 Gravity – 1k Isostatically corrected gravity subtracted from upward continued gravity at 1000 metres 14 Magnetics 5km Upward continued magnetic anomaly grid at 5 km 15 Magnetic 10km Upward continued magnetic anomaly grid at 10 km 16 Magnetic 5-10km Upward continued 5km magnetic anomaly grid subtracted from upward continued 10 km magnetic anomaly grid 17 Magnetic basement Depth to magnetic basement using the tilt method. *Primary datasets including gravity, magnetics and surface geology sourced from Geoscience Australia http://www.ga.gov.au/data-pubs/maps Elevation dataset used the 3 second (~90m) Shuttle Radar Topography Mission (SRTM) digital elevation model. https://pid.geoscience.gov.au/dataset/ga/72760.
Product Type
dataset
eCat Id
111564
Contact for the resource
Resource provider
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Point of contact
- Contact instructions
- MEG
Keywords
-
- Cenozoic
-
- Cover thickness
-
- Murray Basin
- Australian and New Zealand Standard Research Classification: Fields of Research
-
- Earth Sciences
-
- Published_External
Publication Date
2017-07-10T14:00:00
Creation Date
2017-06-29T10:55:00
Security Constraints
Legal Constraints
Status
completed
Purpose
Maintenance Information
asNeeded
Topic Category
geoscientificInformation
Series Information
Lineage
Cenozoic thickness derived from driillhole interpretation and depth estimates from geophysical datasets. Site observations are made into gridded surfaces using kriging and machine learning.
Parent Information
Extents
[-37.922, -29.798, 138.181, 148.875]
Reference System
Spatial Resolution
.00083 arc seconds
Service Information
Associations
Downloads and Links
Source Information