A national-scale assessment of carbonatite-related rare earth element mineral system potential in Australia
<div>The production of rare earth elements (REEs) is critical to the global transition to a low carbon economy. Carbonatites represent a significant source of REEs, both domestically within Australia, as well as globally. Given their strategic importance for the Australian economy, a national mineral potential assessment has been undertaken as part of the Exploring for the Future program at Geoscience Australia to evaluate the potential for carbonatite-related REE (CREE) mineral systems. Rather than aiming to identify individual carbonatites and/or CREE deposits, the focus of the mineral potential assessment is to delineate prospective belts or districts within Australia that indicate the presence of favourable criteria, particularly in terms of lithospheric architecture, that may lead to the formation of a CREE mineral system.</div><div><br></div><div>This study demonstrates how national-scale multidisciplinary precompetitive geoscience datasets can be integrated using a hybrid methodology that incorporates robust statistical analysis with mineral systems expertise to predictively map areas that have a higher geological potential for the formation of CREE mineral systems and effectively reduce the exploration search space. Statistical evaluation of the relationship between different mappable criteria that represent spatial proxies for mineral system processes and known carbonatites and CREE deposits has been undertaken to test previously published hypotheses on how to target CREE mineral systems at a broad-scale. The results confirm the relevance of most criteria in the Australian context, while several new criteria such as distance to large igneous province margins and distance to magnetic worms have also been shown to have a strong correlation with known carbonatites and CREE deposits. Using a hybrid knowledge- and data-driven mineral potential mapping approach, the mineral potential map predicts the location of known carbonatite and CREE deposits, while also demonstrating additional areas of high prospectivity in regions with no previously identified carbonatites or CREE mineralisation.</div>
Presented at the AusIMM Critical Minerals Conference 2023.
Simple
Identification info
- Date (Creation)
- 2023-05-02T16:00:00
- Date (Publication)
- 2024-01-31T03:59:58
- Citation identifier
- Geoscience Australia Persistent Identifier/https://pid.geoscience.gov.au/dataset/ga/147798
- Cited responsible party
-
Role Organisation / Individual Name Details Publisher Commonwealth of Australia (Geoscience Australia)
Voice Author Ford, A.
Internal Contact Author Huston, D.
Internal Contact Author Cloutier, J.
External Contact Author Schofield, A.
Internal Contact Author Cheng, Y.
Internal Contact Author Beyer, E.
Internal Contact
- Name
-
AusIMM Critical Minerals Conference 21-23 November 2023, Brisbane, Qld
- Purpose
-
Short abstract for AusIMM Critical Minerals Conference 2023
- Status
- Completed
- Point of contact
-
Role Organisation / Individual Name Details Resource provider Minerals, Energy and Groundwater Division
External Contact Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Point of contact Ford, A.
Internal Contact
- Spatial representation type
- Topic category
-
- Geoscientific information
Extent
))
- Maintenance and update frequency
- Not planned
Resource format
- Title
-
Product data repository: Various Formats
- Website
-
Data Store directory containing the digital product files
Data Store directory containing one or more files, possibly in a variety of formats, accessible to Geoscience Australia staff only for internal purposes
- Project
-
-
EFTF – Exploring for the Future
-
- Project
-
-
Australia’s Resources Framework
-
- Keywords
-
-
Mineral potential
-
- Keywords
-
-
carbonatites
-
- Keywords
-
-
rare earth elements
-
- Keywords
-
-
critical minerals
-
- theme.ANZRC Fields of Research.rdf
-
-
Resource geoscience
-
Data mining and knowledge discovery
-
- Keywords
-
-
Published_External
-
Resource constraints
- Title
-
Creative Commons Attribution 4.0 International Licence
- Alternate title
-
CC-BY
- Edition
-
4.0
- Addressee
-
Role Organisation / Individual Name Details User Any
- Use constraints
- License
- Use constraints
- Other restrictions
- Other constraints
-
© Commonwealth of Australia (Geoscience Australia) 2023
Resource constraints
- Title
-
Australian Government Security Classification System
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
- Classification system
-
Australian Government Security Classification System
- Language
- English
- Character encoding
- UTF8
Distribution Information
- Distributor contact
-
Role Organisation / Individual Name Details Distributor Commonwealth of Australia (Geoscience Australia)
Voice facsimile
- OnLine resource
-
Link to Conference Page
Link to Conference Page
- Distribution format
-
Resource lineage
- Statement
-
<div>Multiple national-scale geological and geophysical datasets were used as the basis for generating novel mappable criteria for distinct mineral system components. These have been integrated into a a series of coherent products to assess mineral prospectivity.</div>
Metadata constraints
- Title
-
Australian Government Security Classification System
- Edition date
- 2018-11-01T00:00:00
- Classification
- Unclassified
Metadata
- Metadata identifier
-
urn:uuid/03b55468-4cf3-4d4e-b9d2-812a4f0b5831
- Title
-
GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
- Contact
-
Role Organisation / Individual Name Details Point of contact Commonwealth of Australia (Geoscience Australia)
Voice Point of contact Ford, A.
Internal Contact
Type of resource
- Resource scope
- Document
- Name
-
Conference Abstract
Alternative metadata reference
- Title
-
Geoscience Australia - short identifier for metadata record with
uuid
- Citation identifier
- eCatId/147798
- Date info (Creation)
- 2024-01-31T03:38:59
- Date info (Revision)
- 2024-01-31T03:38:59
Metadata standard
- Title
-
AU/NZS ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-1:2014
Metadata standard
- Title
-
ISO 19115-3
- Title
-
Geoscience Australia Community Metadata Profile of ISO 19115-1:2014
- Edition
-
Version 2.0, September 2018
- Citation identifier
- http://pid.geoscience.gov.au/dataset/ga/122551