offshore Otway Basin
Type of resources
Keywords
Publication year
Topics
-
<div>As a resource to enhance exploration in the offshore Otway Basin, Geoscience Australia (GA) has produced a new well folio that extends the scope of a previous release by including 32 key wells from the central and southeast regions. This folio covers the areas from Normanby 1 on the Normanby Terrace, through the Shipwreck Trough and Nelson Sub-basin, to Whelk 1 in the south. The previous well composites included wireline logs for petrophysical analysis, interpreted lithology, organic geochemistry and organic petrology data, and well markers. This folio includes all of these attributes with the addition of core-based depositional environment (DE) and gross depositional environment (GDE) interval interpretations which were subsequently used to constrain wireline interpretation away from core control. The core/wireline lithological interpretation along with further seismic and biostratigraphic data informed well marker locations and enabled a better regional correlation across the basin. The folio provides the complementary datasets used to construct each well composite. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)
-
<div>Gas production from the Inner Otway Basin commenced in the early 2000s but the deep-water part of this basin remains an exploration frontier. Ground-truthing of depositional environments (DE) and gross depositional environments (GDE) is an important contribution to play-based exploration in the Otway Basin. This digital dataset consists of core logs and core photographs of approximately 700 m of core from 19 wells across the entire offshore basin. Observations recorded in the logs include lithology, modal grain size, stacking patterns, carbonate mud percentage, bioturbation index, and DE/GDE intervals. Cubitt et al. 2023 describes how core-based DE/GDE interpretations were applied to wireline log signatures with interpretations made from TD to the base Cenozoic in 38 wells across the basin. DE and DE tracks are included in the well composite logs compiled by Nguyen et al (2024).</div>
-
<div>Ideally when combining different 3D seismic surveys differences in acquisition parameters warrant full pre-stack reprocessing from field data. However, there are occasions where this is not possible due to time, financial or data access constraints; a valuable alternative is post-stack merging and enhancement of existing migrations. The offshore Otway Basin was the subject of such a project, the objective of which was to produce a regularised and seamless 3D dataset of the highest possible quality, within a two-month turnaround time. The input migrated volumes varied by data extent, migration methodology, angle range and grid orientation. 14 input volumes totalling 8,092 km2 were post-stack merged and processed to produce a continuous and consistent volume, enabling more efficient and effective interpretation of the region. The surveys were regularised onto a common grid, optimised for structural trend, prior to survey matching. DUG’s mis-tie analysis algorithm, applied over a time window optimised for interpretation of key</div><div>events, was used to derive corrections for timing, phase and amplitude, using the Investigator North survey as a reference. This was followed by time-variant spectral and amplitude matching, with gain corrections applied, to improve continuity between volumes. Additional enhancements including noise removal and lateral amplitude scaling were also applied. The final merged volume offers significant uplift over the inputs providing better imaging of structure and event and dramatically improving the efficiency and quality of interpretation. This enables rapid reconnaissance of the area by explorers. Presented at the Australian Energy Producers (AEP) Conference & Exhibition