From 1 - 10 / 631
  • Australia has a rich uranium endowment. Amongst other favourable geological conditions for the formation of uranium deposits, such as the presence of intracratonic sedimentary basins, Australia is host to widespread uranium-rich felsic igneous rocks spanning a wide range of geological time. Many known uranium deposits have an empirical spatial relationship with such rocks. While formation of some mineral systems is closely associated with the emplacement of uranium-rich felsic magmas (e.g., the super-giant Olympic Dam deposit), most other systems have resulted from subsequent low temperature processes occurring in spatial proximity to these rocks. Approximately 91% of Australia's initial in-ground resources of uranium occur in two main types of deposits: iron-oxide breccia complex deposits (~ 75%) and unconformity-related deposits (~ 16%). Other significant resources are associated with sandstone- (~ 5%) and calcrete-hosted (~ 1%) deposits. By comparison, uranium deposits associated with orthomagmatic and magmatic-hydrothermal uranium systems are rare. Given the paucity of modern exploration and the favourable geological conditions with Australia, there remains significant potential for undiscovered uranium deposits. This paper discusses mineral potential of magmatic- and basin-related uranium systems.

  • Legacy product - no abstract available

  • Welcome to Australia's Energy and Mineral Resources Showcase: This CD contains copies of the Showcase presentations and supporting material. If the application does not start automatically, please open 'index.hta' or 'index' to start it manually.

  • Rare-earth-element (REE) mineral systems in Australia are associated with igneous, sedimentary, and metamorphic rocks in a range of geological environments (http://www.ga.gov.au/image_cache/GA19657.pdf). Elevated concentrations of these elements have been documented in various carbonatite intrusions, (per)alkaline igneous rocks, iron-oxide breccia complexes, calc-silicate rocks (skarns), fluorapatite veins, pegmatites, phosphorites, fluvial sandstones, unconformity-related uranium deposits, lignites and heavy-mineral sand deposits (beach, dune, marine tidal, and channel). The distribution and concentration of REE in these deposits is influenced by various rock-forming processes including enrichment in magmatic or hydrothermal fluids, separation into mineral species and precipitation, and subsequent redistribution and concentration through weathering and other surface processes. The lanthanide series of REE and yttrium, show a close association with alkaline felsic igneous rocks, however, scandium in laterite profiles has an affinity with ultramafic-mafic igneous rocks.

  • Geoscience Australia (GA) has recently released regional airborne electromagnetic data (AEM) in two survey areas of the Pine Creek region. The Woolner Granite-Rum Jungle survey in the western part of the region was flown using TEMPESTTM and the Kombolgie survey in the eastern part was flown using VTEMTM. These data assist in mapping geological features deemed to be critical for fertile unconformity-related uranium and sandstone-hosted uranium systems. These mapped features in combination with other datasets are used to assess the prospectivity of uranium systems.

  • Improving techniques for mapping land surface composition at regional- to continental-scale is the next step in delivering the benefits of remote sensing technology to Australia. New methodologies and collaborative efforts have been made as part of a multi-agency project to facilitate uptake of these techniques. Calibration of ASTER data with HyMAP has been very promising, and following an program in Queensland, a mosaic has been made for the Gawler-Curnamona region in South Australia. These programs, undertaken by Geoscience Australia, CSIRO, and state and industry partners, aims to refine and standardise processing and to make them easily integrated with other datasets in a GIS.