Wednesday Seminar
Type of resources
Keywords
Publication year
Topics
-
The presentation will introduce the basic components of the drone/UAV/RPAs, summarise the rules for operating a drone as part of a business or undertaking (including operating under a Remotely Piloted Aircraft Operators Certificate – ReOC) and present some of the science and scientists utilising RPAs for their work at Geoscience Australia and beyond. The talks will include environmental research in Antarctica, landscape analysis after large earthquakes, machine learning to spot dangerous sharks and validating satellite reflectance, all with the assistance of drones.
-
Characterising earthquake hazard in low seismicity regions is challenging, due to both the inherent lack of data and an incomplete theoretical understanding of the controls on earthquake occurrence away from plate boundaries. In the plate boundary paradigm, elastic rebound theory predicts that cycles of strain accumulation and release will result in regular, or quasiperiodic, recurrence of large earthquakes on individual faults. Analysis of a global compilation of long-term earthquake records shows that this largely holds in plate boundary regions, but begins to break down in intraplate and other low seismicity regions, where more irregular, or aperiodic, earthquake recurrence is observed. In this talk the Otago region of southern New Zealand is used as a case study of a low seismicity region with evidence for aperiodic earthquake recurrence. New paleoearthquake and slip rate data are used to extend the record of faulting back more than 100 ka on two faults, the Hyde and Dunstan faults. These data allow the variability of earthquake rates on these faults to be characterised, with novel Bayesian methods developed to forecast the probability of future earthquakes. Finally, the talk discusses the potential for application of these methods in the Australian context.
-
From being a poorly understood qualitative mapping tool, airborne electromagnetic (AEM) geophysics has become a mainstay for rapidly imaging the top few hundred metres of buried earth for a variety of geoscientific and environmental purposes. In this talk, we will detail GA’s quest to provide high quality, quantitative interpretation of AEM sounding data. Beginning with a 20-year historical perspective, we will shed light on how persistent focus on AEM technology directly led to AusAEM, the world’s largest (ongoing) AEM survey. We will then discuss how continuing focus on AEM has led to the development of an open source framework written in the Julia language, for subsurface imaging AND uncertainty quantification. This codebase is useful for geophysical methods beyond AEM, such as magnetotellurics and magnetic resonance. Finally, we will dwell on some real life examples using the new codebase and will look to the future of AEM@GA and its untapped potential.
-
Precise positioning based on constellations of navigation satellites brings significant economic and social benefits to Australia. Precise positioning reduces fertiliser and chemical spray waste in agriculture. It improves the efficiency of operations in large mine sites. Precise positioning improves safety in aircraft operations and can even give added freedom of movement to sight impaired people. The rationale behind the Ginan project is to develop the software and data products to allow everybody in Australia to enjoy the benefits of precise positioning through the creation of new services and products, and in doing so drive economic growth enhancing Australia's prosperity.
-
Antarctica conjures images of expansive white icesheets but what about the 1% not covered by ice? Though small, these exposed islands of rock are hotspots of human and animal activity. Tourism, infrastructure development, and research activities can harm these fragile environments and in the dry Antarctic climate, damage from walking and vehicle tracks can persist for years. Geoscience Australia’s landscape vulnerability project has been addressing knowledge gaps about how these environments react to disturbance by people, how they recover, and new methods to track landscape change. Through this work, GA is helping build Australia’s capability as a leader in Antarctic environmental stewardship and meet our obligations under the Antarctic Treaty System and domestic legislation.
-
The clean energy transition will require a vast increase in metal supply, yet discoveries of new mineral deposits are declining. Recently, several case studies have demonstrated links between electrical conductors imaged using magnetotelluric (MT) data and mineral deposits. Use of MT methods for exploration is therefore growing but the general applicability has not yet been tested. We look at spatial relationships between conductors and three deposit styles and find that volcanic hosted massive sulfide (VHMS) and copper porphyry deposits show weak to moderate correlations with conductors in the upper mantle. In contrast, orogenic gold deposits show strong correlations with mid-crustal conductors. These differences likely reflect differences in the way these deposits form, and suggest a metamorphic-fluid source for orogenic gold is significant. The resistivity signature can be preserved for hundreds of millions of years, and therefore MT can be a powerful tool for mineral exploration.
-
Our planet provides everything we need for our lives, including the food we eat. As the human population increases and expectations for lifestyle quality increases, so too do the pressures placed on our planet to provide that food. We therefore need to be better at producing food and understanding how that links to our scientific understanding of our planet. For National Science Week 2021, the Geoscience Australia public seminar (co-sponsored by the ACT Division of the Geological Society of Australia and the ACT Branch of the Australian Marine Sciences Association) will present four speakers to demonstrate how geoscience is integral to the provision of our food. Steve Hill – The Long View: Across many disciplines of geoscience and different spatial scales, geology, soils and even plate tectonics influence our food (and wine). Andrew Carroll – Finding Important Seabed Habitat (FISH): Did you know that seabed mapping data directly contributes $9 billion to the Australian economy each year and employs over 56,000 people? For the fishing and aquaculture sectors, seabed mapping is valued at $3 billion. However, only one quarter of Australia’s seabed is mapped! Learn how GA is addressing this challenge to support the rapid growth of Australia's Blue Economy. Claire Krause – Food at Scale: In a country as big and dynamic as Australia, producing food is no small task. Satellite imagery is being leveraged to map, monitor and understand Australia’s food production regions and to identify and manage challenges in the sector. Anna Riddell – From Paddock to Plate with Positioning: Have you ever wondered how your food arrives on your plate and the role that navigation satellites play? Positioning is becoming ubiquitous in everyday life and even has a part in enabling our food to be grown, harvested and transported.
-
Compilation of age and endowment data on volcanic-hosted massive sulfide (VHMS), porphyry copper, orthomagmatic nickel, orogenic gold, granite-related rare metal and pegmatite deposits (nearly 1200 deposits from 21 mineral provinces) indicate that metallogenic patterns change over time. For much of Earth’s history, the metallogenesis of convergent margins is marked by a relatively systematic temporal progression of deposits, the convergent margin metallogenic cycle (CMMC): VHMS, calc-alkalic porphyry copper and orthomagmatic nickel → orogenic gold → alkalic porphyry copper, granite-related rare metal and pegmatite. Typically CMMCs last 70-170 Myr, and the progression appears to be related to the convergent margin tectonic cycle (Collins and Richards, 2008). Prior to ~3100 Ma, however, CMMCs are not recognised. Rather, these old mineral provinces are characterised by long metallogenic histories (400-500 Myr) with an irregular distribution of deposits. The Mesoarchean to Mesoproterozoic is characterised mostly by mineral provinces with short (80-150 Myr) metallogenic histories and a single CMMC. Between 1900 Ma and 1800 Ma, however, some mineral provinces (e.g. Trans-Hudson and Sveccofennian) are characterised by multiple CMMCs, with total metallogenic histories that last up to 200 Myr. Paleoproterozoic provinces with multiple CMMCs formed by the consumption of internal seas, whereas mineral provinces on outward-facing convergent margin typically have only one CMMC. After ~800 Ma, convergent margins are mostly long-lived (290-480 Myr) and are characterised by multiple CMMCs with complex metallogenic histories. The changes in the metallogenesis of convergent margins reflect changes in tectonic processes through time. Prior to 3100 Ma, stagnant lid tectonics, which did not involve subduction, resulted in the formation of oceanic plateaus with irregular periods of mineralisation. After the initiation of subduction at ~3100 Ma, the style of metallogenesis changed. The dominance of provinces with a single CMMC from 3100 to 800 Ma suggests that convergent margins were unstable and could be shut down easily. This is consistent with models of shallow-break-off subduction whereby the subducting slab breaks off at shallow levels due to the lower plate strength in the Archean and the early part of the Proterozoic. When the slab breaks off, the subduction system shuts down and produces a single CMMC. Only in cases where factors such as closure of internal seas force continued subduction do multiple CMMCs occur. The change to longer metallogenic histories and multiple CMMCs at ~800 Ma is likely the consequence of the cooling of the mantle, which increases plate strength, allowing subduction of cold slabs deeper into the mantle and more stable convergence: continuous ridge push and the density of oceanic crust causes re-initiated of subduction further outboard rather than complete termination of subduction when the convergent margin is perturbed by the accretion of an exotic block or other tectonic event. Subduction only terminates upon collision of two major crustal blocks. As a consequence, the metallogenic history or geological young convergent margins is long with multiple CMMIs and/or complex temporal interleaving of deposit types.
-
This talk will discuss the current state of carbon capture and storage (CCS) in Australia, and the role it plays for mitigating CO2 emissions. In the talk, work that has been done at Geoscience Australia over the past decade will be discussed. CCS work will also be a part of the future Exploring for the Future Program, which will also be highlighted in the talk.
-
Many people fondly remember assembling their first rock collection or exploding a baking soda volcano as a child. These experiences can be a great gateway into the Earth sciences, but a more tailored and modern approach will ensure future generations are geoscience-literate and eventually able to contribute to the workforce. In this presentation, we 1. Use the Geoscience Australia Education Program as a case study of changing approaches to Earth science education and engagement, particularly after the global pandemic; 2. Discuss four key challenges facing geoscience education and engagement; and 3. Apply these challenges to efforts to promote Earth science to students in later high school, including summarising some of the broader data surrounding the attitudes and priorities of this demographic. We hope that this presentation will help guide the discussion on how we can most effectively ignite the interest of the next generation in pursuing Earth Science.