Resource geoscience
Type of resources
Keywords
Publication year
Topics
-
<div>The Woomera Prohibited Area coexistence framework, underpinned by the Woomera Prohibited Area Rule 2014, aims to balance the priorities of the Australian Defence Force with the priorities of non-defence users. in 2010, and again in 2018, the Australian Government undertook reviews of the Woomera Prohibited Area in order to assess the mineral and petroleum resources in the area. </div><div><br></div><div>The most recent report, <em>Woomera Prohibited Area Resource Prospectivity and Economic Assessment (October 2023)</em>, was commissioned by the South Australian Department for Energy and Mining and prepared by Scyne Advisory in order to provide a resource prospectivity analysis and an economic assessment based on modelled resource prospectivity. </div><div><br></div><div>This professional opinion is an evaluation of the validity of the minerals, energy and groundwater assessment methodology of the 2023 Scyne Advisory report. Access to this document must be sought from: • Branch Head, Mineral Systems Branch • Branch Head, Advice Investment Attraction and Analysis • Chief of Division, Minerals Energy and Groundwater </div>
-
<div>Earth observation is a fast and cost-effective method for greenfields exploration of critical minerals at a continental to regional scale. A broad range of optical satellite sensors are now available to mineral explorers for collecting Earth observation information (EOI) at various spatial and spectral resolutions, with different capabilities for direct identification of mineral groups and/or species as well as selected chemical elements. The spectral resolution of many of the latest imaging spectroscopy satellite systems (e.g., PRISMA - https://www.asi.it/en/earth-science/prisma/; EnMap - https://www.enmap.org/; EMIT - https://earth.jpl.nasa.gov/emit/) allow the mapping of the relative mineral abundance and, in selected cases, even the chemical composition of hydrothermal alteration minerals and pegmatite indicator minerals, such as white mica, chlorite and tourmaline. More specialised hyperspectral satellite systems, such as DESIS (https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-13614/) feature a very high spectral resolution (235 bands at 2.55 nm sampling and 3.5 nm full width half maximum) across parts of the Visible to Near-Infrared (VNIR) wavelength range, opening up the possibility for direct mapping of rare earth elements, such as neodymium. The pixel size of the imaging spectroscopy satellite systems is commonly 30 m, which can be sufficient to map hydrothermal footprints of ore deposits or surface expressions of typical rare element host rocks, such as pegmatites and carbonatites. However, airborne hyperspectral surveys still provide a higher spatial resolution, which can be essential in a given mineral exploration campaign. Selected multispectral satellite systems, such as ASTER (https://terra.nasa.gov/data/aster-data) and WorldView3 (https://resources.maxar.com/data-sheets/worldview-3) do have bands at important wavelength ranges in the shortwave infrared, but not with high enough spectral resolution to clearly identify many indicator minerals for critical minerals deposits. Most publicly available satellite imagery comprises multispectral systems that are focussed on the VNIR, such as Landsat and Sentinel, but which allow the direct identification of only very few mineral groups (mainly iron oxides) and not hydroxylated vector minerals (e.g., white mica, chlorite, tourmaline). This work aims to provide a summary of currently available optical satellite sensors and high-level comparison of their applications for critical minerals exploration. In addition to the spatial and spectral resolution, the impact of, for example, signal-to-noise ratio, striping and band width on accurate mineral and element mapping is discussed. For this, case studies are presented that demonstrate the potential use of the respective sensors for different stages of an exploration campaign and also the opportunities for integration with other geoscience data across scales. This abstract was presented to the 13th IEEE GRSS Workshop on Hyperspectral Image and Signal Processing (WHISPERS) November 2023 (https://www.ieee-whispers.com/)
-
<div>Convergent margins are a hallmark feature of modern style plate tectonics. One expression of their operation is metallogenesis, which therefore may yield important insights into secular changes in styles of convergence and subduction. A global comparison of metallogenesis along convergent margins of over 20 well-endowed provinces indicates a consistent and systematic progression of mineral deposit types. We term this progression the convergent margin metallogenic cycle (CMMC). </div><div> This CMMC mirrors convergent margin evolution. Each metallogenic cycle begins with the formation of porphyry copper deposits and/or volcanic-hosted massive sulphide deposits, associated with arc construction and back arc basin formation, respectively. When the convergent margin transitions into contraction/orogenesis due to processes such as accretion, flattening of subduction, or continent-continent collision, mineral deposits that form include orogenic gold and structurally hosted base metal deposits. Post-contractional extension is marked by the formation of intrusion related rare metal (tin, tungsten, molybdenum) and gold deposits, pegmatites, and alkaline porphyry copper deposits, closing the CMMC. </div><div> Our analysis of the metallogenic record reveals that prior to ~3 Ga, metallogenesis is episodic and non-systematic, with CMMCs not recognised. From the mid- to late Mesoarchean onwards, CMMCs are observed in all provinces analysed, and display systematic trends through time: the Meso- to Neoarchean metallogenic provinces are characterized by a single metallogenic cycle, whereas in the Paleo- to Mesoproterozoic provinces, both single and multiple metallogenic cycles occur. From the middle Neoproterozoic onwards multiple metallogenic cycles are the rule. This evolution is accompanied by an increase in the duration of metallogenesis, ranging from ~100 to 180 million years in the Meso- to Neoarchean and 220 to more than 400 million years since the late Proterozoic. </div><div> We interpret these trends to reflect secular changes in tectonic processes and Earth evolution. The emergence of CMMCs from ~3 Ga provides independent evidence for the operation of some early form of subduction since this time. The fact that CMMCs are recognized in all provinces of mid-Meso- to Neoarchean age suggests that subduction was the common <em>modus operandi</em> rather than an exception. The first appearance of multiple metallogenic cycles in the Paleoproterozoic may reflect the strengthening of cratonic margins by tectonothermal maturation since formation in the Archean. Long-lived metallogenesis and multiple metallogenic cycles in the Neoproterozoic and Phanerozoic are linked to deep-slab break-off, or modern, subduction in which the internal strength of the subducting slab allows maintenance of slab coherency. </div><div> This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)
-
<div>Geoscience Australia’s Onshore Basin Inventories program provides a whole-of-basin inventory of geology, energy systems, exploration status and data coverage of onshore Australian basins. Volume 1 of the inventory covers the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins and Volume 2 expands this list to include the Officer, Perth and onshore Canning basins. These reports provide a single point of reference and create a standardised national inventory of onshore basins. In addition to summarising the current state of knowledge within each basin, the onshore basin inventory identifies critical science questions and key exploration uncertainties that may help inform future work program planning and aid in decision making for both government and industry organisations. Under Geoscience Australia’s Exploring for the Future (EFTF) program, six new onshore basin inventory reports will be delivered. </div><div> </div><div>These reports will be supported by selected value-add products that aim to address identified data gaps and evolve regional understanding of basin evolution and prospectivity. Petroleum system modelling is being undertaken in selected basins to highlight the hydrocarbon potential in underexplored provinces, and seismic reprocessing and regional geochemical studies are underway to increase the impact of existing datasets. The inventories are supported by the ongoing development of the nationwide source rock and fluids atlas, accessed through Geoscience Australia’s Exploring for the Future Data Discovery Portal, which continues to improve the veracity of petroleum system modelling in Australian onshore basins.</div><div> </div><div>In summarising avenues for further work, the Onshore Basin Inventories program has provided scientific and strategic direction for pre-competitive data acquisition under the EFTF work program. Here, we provide an overview of the current status of the Onshore Basin Inventories, with emphasis on its utility in shaping EFTF data acquisition and analysis, as well as new gap-filling data acquisition</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)
-
<div>Lateral variation in maturity of potential Devonian source rocks in the Adavale Basin have been investigated using nine 1D burial thermal and petroleum generation history models, constructed using existing open file data. These models provide an estimate of the hydrocarbon generation potential of the basin. Total organic carbon (TOC) content and pyrolysis data indicate that the Log Creek Formation, Bury Limestone and shale units of the Buckabie Formation have the most potential as source rocks. The Log Creek Formation and the Bury Limestone are the most likely targets for unconventional gas exploration.</div><div> </div><div>The models were constructed used geological information from well completion reports to assign formation tops and stratigraphic ages to then forward-model the evolution of geophysical parameters. The rock parameters, including facies, temperature, organic geochemistry/petrology, were used to investigate source rock quality, maturity and kerogen type. Suitable boundary conditions were assigned for paleo-heat flow, paleo-surface temperature and paleo-water depth. The resulting models were calibrated using bottom hole temperature and measured vitrinite reflectance data.</div><div> </div><div>The results correspond relatively well with published heat flow predictions, however a few wells show possible localised heat effects that differ from the overall basin average. The models indicate full maturation of the Devonian source rocks with generation occurring during the Carboniferous and again during the Late Cretaceous. Any potential accumulations may be trapped in Devonian sandstone, limestone and mudstone units, as well as overlying younger sediments of the Mesozoic Eromanga Basin. Accumulations could be trapped by localised deposits of the Cooladdi Dolomite and other marine, terrestrial clastic and evaporite units around the basin. Migration of the expelled hydrocarbons may be restricted by overlying regional seals, such as the Wallumbilla Formation of the Eromanga Basin. Unconventional hydrocarbons are a likely target for the Adavale Basin with potential either for tight or shale gas in favourable areas from the Log Creek Formation and Bury Limestone.</div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)
-
A high-level factsheet that provides an overview of Geoscience Australia's High Purity Silica mineral potential study, which is part of the Australian Critical Mineral's Research and Development Hub.
-
<div>The mineral potential toolkit (aka minpot-toolkit) provides tools to facilitate mineral potential analysis, from spatial associations to feature engineering and fully integrated mineral potential mapping.</div>
-
<div>Gas production from the Inner Otway Basin commenced in the early 2000s but the deep-water part of this basin remains an exploration frontier. Historically, the understanding of plays in this region were largely model driven and therefore the ground-truthing of depositional environments (DE) and gross depositional environments (GDE) are critical. This aspect has been investigated for the Sherbrook Supersequence (SS) by the integration of legacy wireline and core data, with regional 2D seismic facies mapping of new and reprocessed data from Geoscience Australia’s 2020 Otway Basin seismic program. Core observations were matched to wireline logs and seismic facies with resulting well based DE interpretations calibrated to seismic resolution Regional GDE intervals. Integration of well and seismic observations lead to the compilation of a basin-wide Regional GDE map for the Sherbrook SS. This GDE map indicates the distribution of Sherbrook SS play elements such as source rock, seal and reservoir, especially across the Deep Water Otway Basin where well data is sparse.</div> Published in The APPEA Journal 2023. <b>Citation:</b> Cubitt Chris, Abbott Steve, Bernardel George, Gunning Merrie-Ellen, Nguyen Duy, Nicholson Chris, Stoate Alan (2023) Cretaceous depositional environment interpretation of offshore Otway Basin cores and wireline logs; application to the generation of basin-scale gross depositional environment maps. <i>The APPEA Journal</i><b> 63</b>, S215-S220. https://doi.org/10.1071/AJ22090
-
<div>Tin and tungsten have good potentials for increased demand applications particularly in the electrical and energy storage areas. Similar to other critical metals like Li and Co, Sn and W are essential ingredients for many applications and technologies that are important for a sustainable future. </div><div> </div><div>Granite related hydrothermal mineral systems are the predominant source for Sn and W deposits.Cassiterite, wolframite and scheelite are primary Sn and W ore minerals in nature. The distribution of Sn rich areas around the world is uneven, which may reflects that geochemical heritage is fundamental to form Sn and W deposits. Besides, magmatic differentiation has been considered as another efficient way to enrich Sn in various geological reservoirs. The tectonic setting of Sn and W mineralisation is well understood, with most Sn and W deposits having formed at active margin settings. A comparison between the Tethyan and Andean Sn-W mineral systems confirmed that Sn and W mineral systems can form under thickened continental crust associated with an oceanic crust subduction. The importance of granitoids for the formation of Sn and W mineral systems is well understood. The genetic affinity of causative intrusions can be either S-type, I-type or A-type, but a common feature is that they are reduced (or ilmenite series) and highly evolved (high SiO2 content and high Rb/Sr ratio). Another prominent feature for Sn and W mineral systems is their high concentration of critical metals, including Li, Ce, Ta and In etc. Therefore, Sn and W mineralisation has a close association with other critical metal mineralisation. Overall, the precipitation mechanisms of W (wolframite and scheelite) and Sn (cassiterite) ore minerals from the hydrothermal fluid include (1) fluids mixing, (2) boiling and, (3) water-rock interaction. </div><div><br></div><div>Recent studies have highlighted discrepancies in Sn mineralisation and W mineralisation conditions. Although Sn- and W-associated granites have substantial overlapping characteristics, many of their physico-chemical natures (e.g., aluminum-saturation index (ASI) values, zirconium saturation temperatures and crystal fractionation degrees) are distinctive, suggesting Sn- and W-granites may form under different geological conditions. The difference between Sn mineralisation and W mineralisation is also evident by their contrasting fluid-melt partitioning coefficients. Tungsten strongly partitions into the aqueous fluid and can be transported farther away from the intrusion, but Sn slightly partitions into the silicate melt and can precipitate as magmatic cassiterite or be incorporated into crystallizing micas (which can have >100 ppm Sn). Another area warranting more study is understanding the elemental associations observed in Sn and W mineral systems. It is common to have many other metals in Sn-dominant mineral systems, for example W, Li, Nb, Ta. For W-dominant mineral systems, apart from with Sn, other common associated metals include Mo, Au-Bi and Cu. Nevertheless, the relationship between Sn-W and Cu-Au mineral systems at both the regional/provincial-scale and deposit-scale is an intriguing puzzle, because Sn-W and Cu-Au deposits are generally formed under different geological conditions, though their tectonic setting are similar, i.e., arc-related subduction and continental collision. An emerging field for understanding Sn and W mineral systems is made possible with the development of micro-analytical techniques, e.g., in-situ U-Pb geochronology and O-isotopic analyses on cassiterite and wolframite enable a greater understanding of Sn and W mineralising systems. Since both are the primary ore minerals, U-Pb dating on them can deliver direct age information - an advantage compared with many other commodities types like Cu, Au and Ag. However, unlike those commodities, impactful advances on Sn and W exploration models, techniques, and tools have been deficient in recent years; therefore, more attention and effort is needed to boost Sn and W mineral exploration in the future.</div><div><br></div>This paper was presented to the 2022 Asian Current Research on Fluid Inclusions IX (ACROFI IX) Conference 12-13 December (http://www.csmpg.org.cn/tzgg2017/202210/t20221011_6522628.html)
-
<div>Geoscience Australia's geoscientific relational databases use look-up tables to describe the data stored within. These look-ups contain, but are not limited to, information about boreholes, field geology, inorganic and organic geochemistry, hydrochemistry, geophysics, rock properties, samples and other general geological terms. These terms have then been compiled into a vocabulary of terms for publication via GA's vocabulary service. Within this vocabulary, GA references where sourced terms are published in external vocabularies with a source vocabulary URI (Uniform Resource Identifier). </div><div><br></div><div>All vocabularies, collections of concepts within vocabularies and individual concepts are identified with URI persistent identifiers of the form:</div><div>http://pid.geoscience.gov.au/def/voc/ga/{VOCABULARY-KEY}/{COLLECTION-OR-CONCEPT-NAME}</div>