Resource geoscience
Type of resources
Keywords
Publication year
Topics
-
CO<sub>2</sub> enhanced oil recovery (CO<sub>2</sub>-EOR) is a proven technology that can extend the life of oil fields, permanently store CO<sub>2</sub>, and improve the recovery of oil and condensate over time. Although CO<sub>2</sub>-EOR has been used successfully for decades, particularly in the United States, it has not gained traction in Australia to date. In this study, we assemble and evaluate data relevant to CO<sub>2</sub>-EOR for Australia’s key oil and condensate producing basins, and develop a national-scale, integrated basin ranking that shows which regions have the best overall conditions for CO<sub>2</sub>-EOR. The primary goals of our study are to determine whether Australia’s major hydrocarbon provinces exhibit suitable geological and oil characteristics for successful CO<sub>2</sub>-EOR activities and to rank the potential of these basins for CO<sub>2</sub>-EOR. Each basin is assessed based on the key parameters that contribute to a successful CO<sub>2</sub>-EOR prospect: oil properties (API gravity), pressure, temperature, reservoir properties (porosity, permeability, heterogeneity), availability of CO<sub>2</sub> for EOR operations, and infrastructure to support EOR operations. The top three ranked basins are the onshore Bowen-Surat, Cooper-Eromanga and offshore Gippsland Basins, which are all in relatively close proximity to the large east coast energy/oil markets. A significant factor that differentiates these three basins from the others considered in this study is their relatively good access to CO<sub>2</sub> and well-developed infrastructure. The next three most suitable basins are located offshore on the Northwest Shelf (Browse, Carnarvon, and Bonaparte Basins). While these three basins have mostly favourable oil properties and reservoir conditions, the sparse CO<sub>2</sub> sources and large distances involved lead to lower scores overall. The Canning and Amadeus Basins rank the lowest among the basins assessed, being relatively immature and remote hydrocarbon provinces, and lacking the required volumes of CO<sub>2</sub> or infrastructure to economically implement CO<sub>2</sub>-EOR. In addition to ranking the basins for successful implementation of CO<sub>2</sub>-EOR, we also provide some quantification of the potential recoverable oil in the various basins. These estimates used the oil and condensate reserve numbers that are available from national databases combined with application of internationally observed tertiary recovery factors. Additionally, we estimate the potential mass of CO<sub>2</sub> that would be required to produce these potential recoverable oil and condensate resources. In the large oil- and condensate-bearing basins, such as the Carnarvon and Gippsland Basins, some scenarios require over a billion tonnes of CO<sub>2</sub> to unlock the full residual resource, which points to CO<sub>2</sub> being the limiting factor for full-scale CO<sub>2</sub>-EOR development. Even taking a conservative view of the available resources and potential extent of CO<sub>2</sub>-EOR implementation, sourcing sufficient amounts of CO<sub>2</sub> for large-scale deployment of the technology presents a significant challenge. <b>Citation:</b> Tenthorey, E., Kalinowski, A., Wintle, E., Bagheri, M., Easton, L., Mathews, E., McKenna, J., Taggart, I. 2022. Screening Australia’s Basins for CO2-Enhanced Oil Recovery (December 6, 2022). <i>Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) 23-24 Oct 2022</i>, Available at SSRN: <a href="https://ssrn.com/abstract=4294743">https://ssrn.com/abstract=4294743</a> or <a href="http://dx.doi.org/10.2139/ssrn.4294743">http://dx.doi.org/10.2139/ssrn.4294743</a>
-
<div>Geoscience Australia and CSIRO have collaborated, under the Exploring for the Future program, to investigate whether water-saturated residual oil zones (ROZs), sometimes associated with conventional Australian hydrocarbon plays, could provide a CO2 storage resource and enhance the storage capacity of depleted fields. This product is part of a larger project that includes, among others, a reservoir modelling component. </div><div>This report focuses on our petrophysical module of work that investigated the occurrence and character of ROZs in onshore Australian basins. Our findings demonstrate that ROZs occur in Australia’s hydrocarbon-rich regions, particularly in the Cooper-Eromanga Basin. ROZs with more than 10% residual oil saturation are uncommon, likely due to small original oil columns and lower residual saturations retained in sandstone reservoirs than in classic, carbonate-hosted North American ROZs. Extensive, reservoir-quality rock is found below the deepest occurring conventional oil in many of the fields in the Eromanga Basin, potentially offering significant CO2 storage capacity. </div><div>For more information about this project and to access the related studies and products, see: https://www.eftf.ga.gov.au/carbon-co2-storage-residual-oil-zones. </div><div><br></div>
-
<div>Geoscience Australia’s Onshore Basin Inventories program provides a whole-of-basin inventory of geology, energy systems, exploration status and data coverage of onshore Australian basins. Volume 1 of the inventory covers the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins and Volume 2 expands this list to include the Officer, Perth and onshore Canning basins. These reports provide a single point of reference and create a standardised national inventory of onshore basins. In addition to summarising the current state of knowledge within each basin, the onshore basin inventory identifies critical science questions and key exploration uncertainties that may help inform future work program planning and aid in decision making for both government and industry organisations. Under Geoscience Australia’s Exploring for the Future (EFTF) program, six new onshore basin inventory reports will be delivered. </div><div> </div><div>These reports will be supported by selected value-add products that aim to address identified data gaps and evolve regional understanding of basin evolution and prospectivity. Petroleum system modelling is being undertaken in selected basins to highlight the hydrocarbon potential in underexplored provinces, and seismic reprocessing and regional geochemical studies are underway to increase the impact of existing datasets. The inventories are supported by the ongoing development of the nationwide source rock and fluids atlas, accessed through Geoscience Australia’s Exploring for the Future Data Discovery Portal, which continues to improve the veracity of petroleum system modelling in Australian onshore basins.</div><div> </div><div>In summarising avenues for further work, the Onshore Basin Inventories program has provided scientific and strategic direction for pre-competitive data acquisition under the EFTF work program. Here, we provide an overview of the current status of the Onshore Basin Inventories, with emphasis on its utility in shaping EFTF data acquisition and analysis, as well as new gap-filling data acquisition</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)
-
<div>Tin and tungsten have good potentials for increased demand applications particularly in the electrical and energy storage areas. Similar to other critical metals like Li and Co, Sn and W are essential ingredients for many applications and technologies that are important for a sustainable future. </div><div> </div><div>Granite related hydrothermal mineral systems are the predominant source for Sn and W deposits.Cassiterite, wolframite and scheelite are primary Sn and W ore minerals in nature. The distribution of Sn rich areas around the world is uneven, which may reflects that geochemical heritage is fundamental to form Sn and W deposits. Besides, magmatic differentiation has been considered as another efficient way to enrich Sn in various geological reservoirs. The tectonic setting of Sn and W mineralisation is well understood, with most Sn and W deposits having formed at active margin settings. A comparison between the Tethyan and Andean Sn-W mineral systems confirmed that Sn and W mineral systems can form under thickened continental crust associated with an oceanic crust subduction. The importance of granitoids for the formation of Sn and W mineral systems is well understood. The genetic affinity of causative intrusions can be either S-type, I-type or A-type, but a common feature is that they are reduced (or ilmenite series) and highly evolved (high SiO2 content and high Rb/Sr ratio). Another prominent feature for Sn and W mineral systems is their high concentration of critical metals, including Li, Ce, Ta and In etc. Therefore, Sn and W mineralisation has a close association with other critical metal mineralisation. Overall, the precipitation mechanisms of W (wolframite and scheelite) and Sn (cassiterite) ore minerals from the hydrothermal fluid include (1) fluids mixing, (2) boiling and, (3) water-rock interaction. </div><div><br></div><div>Recent studies have highlighted discrepancies in Sn mineralisation and W mineralisation conditions. Although Sn- and W-associated granites have substantial overlapping characteristics, many of their physico-chemical natures (e.g., aluminum-saturation index (ASI) values, zirconium saturation temperatures and crystal fractionation degrees) are distinctive, suggesting Sn- and W-granites may form under different geological conditions. The difference between Sn mineralisation and W mineralisation is also evident by their contrasting fluid-melt partitioning coefficients. Tungsten strongly partitions into the aqueous fluid and can be transported farther away from the intrusion, but Sn slightly partitions into the silicate melt and can precipitate as magmatic cassiterite or be incorporated into crystallizing micas (which can have >100 ppm Sn). Another area warranting more study is understanding the elemental associations observed in Sn and W mineral systems. It is common to have many other metals in Sn-dominant mineral systems, for example W, Li, Nb, Ta. For W-dominant mineral systems, apart from with Sn, other common associated metals include Mo, Au-Bi and Cu. Nevertheless, the relationship between Sn-W and Cu-Au mineral systems at both the regional/provincial-scale and deposit-scale is an intriguing puzzle, because Sn-W and Cu-Au deposits are generally formed under different geological conditions, though their tectonic setting are similar, i.e., arc-related subduction and continental collision. An emerging field for understanding Sn and W mineral systems is made possible with the development of micro-analytical techniques, e.g., in-situ U-Pb geochronology and O-isotopic analyses on cassiterite and wolframite enable a greater understanding of Sn and W mineralising systems. Since both are the primary ore minerals, U-Pb dating on them can deliver direct age information - an advantage compared with many other commodities types like Cu, Au and Ag. However, unlike those commodities, impactful advances on Sn and W exploration models, techniques, and tools have been deficient in recent years; therefore, more attention and effort is needed to boost Sn and W mineral exploration in the future.</div><div><br></div>This paper was presented to the 2022 Asian Current Research on Fluid Inclusions IX (ACROFI IX) Conference 12-13 December (http://www.csmpg.org.cn/tzgg2017/202210/t20221011_6522628.html)
-
<div>Convergent margins are a hallmark feature of modern style plate tectonics. One expression of their operation is metallogenesis, which therefore may yield important insights into secular changes in styles of convergence and subduction. A global comparison of metallogenesis along convergent margins of over 20 well-endowed provinces indicates a consistent and systematic progression of mineral deposit types. We term this progression the convergent margin metallogenic cycle (CMMC). </div><div> This CMMC mirrors convergent margin evolution. Each metallogenic cycle begins with the formation of porphyry copper deposits and/or volcanic-hosted massive sulphide deposits, associated with arc construction and back arc basin formation, respectively. When the convergent margin transitions into contraction/orogenesis due to processes such as accretion, flattening of subduction, or continent-continent collision, mineral deposits that form include orogenic gold and structurally hosted base metal deposits. Post-contractional extension is marked by the formation of intrusion related rare metal (tin, tungsten, molybdenum) and gold deposits, pegmatites, and alkaline porphyry copper deposits, closing the CMMC. </div><div> Our analysis of the metallogenic record reveals that prior to ~3 Ga, metallogenesis is episodic and non-systematic, with CMMCs not recognised. From the mid- to late Mesoarchean onwards, CMMCs are observed in all provinces analysed, and display systematic trends through time: the Meso- to Neoarchean metallogenic provinces are characterized by a single metallogenic cycle, whereas in the Paleo- to Mesoproterozoic provinces, both single and multiple metallogenic cycles occur. From the middle Neoproterozoic onwards multiple metallogenic cycles are the rule. This evolution is accompanied by an increase in the duration of metallogenesis, ranging from ~100 to 180 million years in the Meso- to Neoarchean and 220 to more than 400 million years since the late Proterozoic. </div><div> We interpret these trends to reflect secular changes in tectonic processes and Earth evolution. The emergence of CMMCs from ~3 Ga provides independent evidence for the operation of some early form of subduction since this time. The fact that CMMCs are recognized in all provinces of mid-Meso- to Neoarchean age suggests that subduction was the common <em>modus operandi</em> rather than an exception. The first appearance of multiple metallogenic cycles in the Paleoproterozoic may reflect the strengthening of cratonic margins by tectonothermal maturation since formation in the Archean. Long-lived metallogenesis and multiple metallogenic cycles in the Neoproterozoic and Phanerozoic are linked to deep-slab break-off, or modern, subduction in which the internal strength of the subducting slab allows maintenance of slab coherency. </div><div> This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)
-
<div>The Adavale Basin is located approximately 850 km west-northwest of Brisbane and southwest of Longreach in south-central Queensland. The basin system covers approximately 100,000 km2 and represents an Early to Late Devonian (Pragian to Famennian) depositional episode, which was terminated in the Famennian by widespread contractional deformation, regional uplift and erosion. </div><div>Burial and thermal history models were constructed for nine wells using existing open file data to assess the lateral variation in maturity and temperature for potential source rocks in the Adavale Basin, and to provide an estimate of the hydrocarbon generation potential in the region.</div>
-
Petroleum systems modelling of the Carrara Sub-basin: 1D and 2D burial and thermal history modelling
<div>This study aims to understand both the burial and thermal history of the Carrara Sub-basin to further develop an understanding of possible geo-energy resources, particularly that for unconventional resources such as shale gas. A 1D and 2D model were developed using data from the above mentioned seismic and drilling campaigns, combined with previously published knowledge of the basin. This work contributes to Australia’s Future Energy Resources (AFER) Project, specifically the Onshore Basin Inventories study, which aims to promote exploration and investment in selected underexplored onshore basins. Inventory reports and petroleum systems modelling are being undertaken in select basins to highlight the oil and gas potential in underexplored provinces and to increase the impact of existing datasets.</div><div><br></div>
-
<div>GeoInsight aims to communicate geological information to non-geoscience professionals and guide users to datasets with ease via a web-based interface. The 18-month pilot project was developed as part of Geoscience Australia’s Exploring for the Future Program (2016–2024) using a human-centred design approach in which user needs are forefront considerations. Interviews and testing with users found that a simple and plain-language experience that provided packaged information with channels to further research is the preferred design. Curated information and data from across Geoscience Australia help users make decisions and refine their research approach quickly and confidently. </div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. </div><div><br></div><div>In the first iteration of GeoInsight, products were selected for minerals, energy, water and complementary information from Geoscience Australia’s Data Discovery Portal and Data and Publications Catalogue. These products were examined to (1) gauge the relevance of the information they contain for non-geoscientists and (2) determine how best to deliver this information for effective use by non-technical audiences. </div><div><br></div><div>This record documents the methodology used to summarise mineral commodities for GeoInsight. The method was devised to provide a straightforward snapshot of mineral production at the time of publication and future production/extraction potential based on Geoscience Australia datasets extrapolated to the regional scale across Australia. </div><div><br></div><div>The initial developmental stage has been dedicated to producing a workable foundation intended to evolve and incorporate more nuanced content centred on user feedback. Initial stages focused on extraction of data from databases across the widest possible breadth of commodities which could be supported by existing workflows and automation. A recommendation for future development is to incorporate the more nuanced information available from Geoscience Australia into future iterations of the GeoInsight platform. A wide range of information related to mineral potential is delivered by Geoscience Australia, very little of which is captured in the current version of GeoInsight. </div><div><br></div><div>Any updates to the methodology used in GeoInsight will be accompanied by updates to this document, including a change log.</div>
-
<div>In response to the acquisition of national-scale airborne electromagnetic surveys and the development of a national depth estimates database, a new workflow has been established to interpret airborne electromagnetic conductivity sections. This workflow allows for high quantities of high quality interpretation-specific metadata to be attributed to each interpretation line or point. The conductivity sections are interpreted in 2D space, and are registered in 3D space using code developed at Geoscience Australia. This code also verifies stratigraphic unit information against the national Australian Stratigraphic Units Database, and extracts interpretation geometry and geological data, such as depth estimates compiled in the Estimates of Geological and Geophysical Surfaces database. Interpretations made using this workflow are spatially consistent and contain large amounts of useful stratigraphic unit information. These interpretations are made freely-accessible as 1) text files and 3D objects through an electronic catalogue, 2) as point data through a point database accessible via a data portal, and 3) available for 3D visualisation and interrogation through a 3D data portal. These precompetitive data support the construction of national 3D geological architecture models, including cover and basement surface models, and resource prospectivity models. These models are in turn used to inform academia, industry and governments on decision-making, land use, environmental management, hazard mapping, and resource exploration.</div>
-
Herein the results of a global compilation of rare earth element (REE) deposits (available in Excel format) are presented. The deposits were selected as they have substantial endowment (i.e., pre-mining mineral resource) and/or detailed geological information is available. For each deposit (or, in some cases, district) the dataset includes information on: 1. Name (including synonyms) and location; 2. Tectonic province that hosts the deposit; 3. Type(s) and age(s) of mineralising events that produced/affected the deposit (including metadata on ages); 4. The metal/mineral endowment of the deposit; 5. Host rocks to the deposit; 6. Spatially and/or temporally associated magmatic rocks; 7. Spatially and temporally associated alteration assemblages (mostly proximal, but, in some cases, regional assemblages); 8. Rare earth element mineralogy; 9. The Fe-S-O minerals present in the deposit and relative abundances where known; 10. Sulfate minerals present; 11. Peak metamorphic grade; 12. Data sources; and 13. Comments. This document presents more detailed descriptions of the metadata presented in the compilation. The dataset is presented in Appendix A.