From 1 - 10 / 22
  • Biostratigraphic analysis of macrofossils extracted from samples taken from BMR Mt Isa 1 well

  • This document is a professional opinion, presenting an assessment of the macrofossils present in well CKAD0001, located in the Northern Territory in the Georgina Basin.

  • macrofossil biostratigraphic analysis of samples taken from Cambrian units in Todd 1 well

  • macrofossil biostratigraphic analysis of samples taken from Cambrian units in GSQ Mt Whelan 1 well

  • A preliminary report on these samples was forwarded on 19/2/'42, the final report being delayed until the results of a mineralogical examination of two rock types, prominent in samples from 1542 feet down to 1549 feet was available. The results of this examination are now available.

  • Biostratigraphic analysis of macrofossils extracted from samples taken from BMR Camooweal 2 well

  • The collection of rocks from the Ok Ti River, Western Papua, was made by Mr. L. Austen in 1922 and is housed in the Commonwealth Palaeontological Collection. It consists of shelly and foraminiferal limestones of Miocene age. The present examination of the collection is being undertaken at the request of the Australasian Petroleum Company, Melbourne.

  • The upper Permian to Lower Triassic sedimentary succession in the southern Bonaparte Basin represents an extensive marginal marine depositional system that hosts several gas accumulations, including the Blacktip gas field that has been in production since 2009. Development of additional identified gas resources has been hampered by reservoir heterogeneity, as highlighted by preliminary results from a post drill analyses of wells in the study area that identify reservoir effectiveness as a key exploration risk. The sedimentary succession that extends across the Permian–Triassic stratigraphic boundary was deposited during a prolonged marine transgression and shows a transition in lithofacies from the carbonate dominated Dombey Formation to the siliciclastic dominated Tern and Penguin formations. Recent improvements in chronostratigraphic calibration of Australian biostratigraphic schemes, spanning the late Permian and Early Triassic, inform our review of available palynological data and re-interpretation and infill sampling of well data. The results provide a better resolved, consistent and up-to-date stratigraphic scheme, allowing an improved understanding of the timing, duration, and distribution of depositional environments of the upper Permian to Lower Triassic sediments across the Petrel Sub-basin and Londonderry High. <b>Citation:</b> Owens R., Kelman A., Khider K., Iwanec J., Bernecker T. (2022) Addressing exploration uncertainties in the southern Bonaparte Basin: enhanced stratigraphic control and post drill analysis for upper Permian plays. <i>The APPEA Journal</i> 62, S474-S479

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the graptolite Monograptus exiguus. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the brachiopod Retziella capricornae. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.