McNamara Group
Type of resources
Keywords
Publication year
Topics
-
Proterozoic rocks of the South Nicholson region, straddling the north-eastern Northern Territory and north-western Queensland, are juxtaposed between the Mount Isa Province and the McArthur Basin. Whereas the latter two provinces are well-studied and highly prospective for energy and mineral resources, the geological evolution and resource potential of the South Nicholson region, until recently, remained largely unevaluated. Geoscience Australia, under the Exploring for the Future (EFTF) initiative (2016–2020), in collaboration with State and Territory Geological Surveys, conducted a range of regional and targeted geoscience investigations across the South Nicholson region to better understand the resource potential, and to encourage greenfield resource exploration. Poster presented at the 2021 Australian Earth Sciences Convention (AESC)
-
<p>This Record presents the results of 26 new zircon U-Pb isotopic analyses, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP2e), under the Commonwealth Government’s Exploring for the Future (EFTF) program, a $100.5 million, four year, initiative to better understand the mineral, energy and groundwater potential across northern Australia. <p>These new data, determined on sedimentary and volcanic rocks, were collected from across the South Nicholson region, located in the north-eastern Northern Territory. The South Nicholson region is geographically located between two highly prospective geological provinces, the greater McArthur Basin in the Northern Territory and the Mount Isa Province in Queensland, regions noted for their hydrocarbon potential and world-class base-metal endowment. <p>The South Nicholson region has been sparsely investigated by modern geological investigations, and, as such, these new SHRIMP U-Pb data, in concert with other complementary EFTF geochronological, geochemical and geophysical datasets from the region (e.g. Anderson et al., 2019; Carr et al., 2019; Ley-Cooper and Brodie, 2019; Jarrett et al., 2019) will place important geological constraints on the geological evolution, the timing of deposition, sedimentary processes, basin architecture and evolution of the South Nicholson region and, arguably most significantly, provide new improved lithostratigraphic and chronostratigraphic correlations with the adjacent highly prospective Proterozoic Basins. <p>Such geological correlations are critical for reducing exploration risk, improve resource prospectivity and enabling targeted ‘greenfield’ resource exploration activities, a tangible key objective under the Exploring for the Future initiative.