Marine Data
Type of resources
Keywords
Publication year
Scale
Topics
-
Geoscience Australia carried out a marine survey on Lord Howe Island shelf (NSW) in 2008 (SS06_2008) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, rock coring, observation of benthic habitats using underwater towed video, and measurement of ocean tides and wave generated currents. Subbottom profile data was also collected to map sediment thickness and shelf stratigraphy. Data and samples were acquired using the National Facility Research Vessel Southern Surveyor. Bathymetric data from this survey was merged with other preexisting bathymetric data (including LADS) to generate a grid covering 1034 sq km. As part of a separate Geoscience Australia survey in 2007 (TAN0713), an oceanographic mooring was deployed on the northern edge of Lord Howe Island shelf. The mooring was recovered during the 2008 survey following a 6 month deployment. The "2461_ss062008" folder contains raw multibeam backscatter data of the Lord Howe Rise. The raw multibeam backscatter data were collected along survey lines using SIMRAD EM300 from aboard RV Southern Surveyor
-
This dataset contains species identifications of sponges collected during survey SOL4934 (R.V. Solander, 27 August - 24 September, 2009). Animals were collected from the Joseph Bonaparte Gulf with a benthic sled. Specimens were lodged at Northern Territory Museum on the 26 September 2009. Species-level identifications were undertaken by Belinda Glasby at the Northern Territory Museum and were delivered to Geoscience Australia on the 23 February 2011. See GA Record 2010/09 for further details on survey methods and specimen acquisition. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications.
-
Geoscience Australia conducted a marine survey (GA0345/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The data collected during this survey complement sequence stratigraphic studies in the Caswell Sub-basin that provide constraints on the most suitable areas for storage of CO2 and help to identify potential CO2 storage reservoirs. The results of this work are published in GA Record 2015/XX (Geocat 83120). The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Pre-survey site selection was informed by mapping fault networks and potential fluid-flow pathways connecting the regional seal to the seabed over interpreted CO2 storage play fairways and through interpretation of associated amplitude anomalies in 2D and 3D seismic data. Shipboard data collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 104 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 30 km2, along with 107 line km of side scan sonar, underwater camera and sub-bottom profile data. Eighteen Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, four grabs and one core. Shipboard and AUV multibeam bathymetry and sub-bottom profiler data indicated the presence of recently active faults in the area, some with significant seafloor surface expression (i.e. fault scarps with up to 40m offset). Some of these faults were visually inspected by the ROV which also confirmed the presence of diverse biological communities. Possible indications of shallow gas were observed on sub-bottom profiles, including amplitude anomalies, cross-cutting reflectors and zones of signal starvation. Water column observations including sidescan sonar, single-beam and multibeam echosounders, underwater video and photography did not conclusively identify hydrocarbon or other fluid seepage. Strong currents encountered during parts of the survey may have interfered with the direct detection of seeps in the water column. While no active signs of seepage were observed, the geochemical and biological sampling undertaken will aid in baseline environmental investigations for this region.
-
No abstract available
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises sediment oxygen demand data (expressed as % saturation per gram dry weight) from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset contains identifications of animals collected from 21 Smith-McIntyre grabs deployed during GA-334. Biological specimens were collected from Smith-McIntyre grabs. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification (see 'lineage'). The dataset is current as of November 2012, but will be updated as taxonomic experts contribute. Stations are named XXGRYY where XX indicates the station number, GR indicates Smith-Mac grab, and YY indicates the sequence of grabs deployed (i.e. the YYth grab on the entire survey).
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises specific surface area and bulk (%) carbonate data from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
The Vlaming Sub-basin Marine Survey GA-0334 was undertaken by the RV Solander in March and April 2012 as part of the Commonwealth Government's National CO2 Infrastructure Plan (NCIP). The purpose was to acquire geophysical and biophysical data to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. This dataset contains identifications of animals collected from 31 Van Veen grabs deployed during GA-334. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification. During sorting, all worms were separated and sent to Infaunal Pty Ltd for identification to species or operational taxonomic unit (OTU). Lynda Avery completed identifications on 17 April 2013, and specimens were lodged at the Museum of Victoria in May 2013. Blank cells in the species matrix indicate a value of '0'. Site refers to the station number, and grab refers to the cumulative number of grabs performed at that point in the survey. Data is presented here exactly as delivered by the taxonomist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications. See GA Record 2013/09 for further details on survey methods and specimen acquisition.
-
Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises %carbonate and specific surface area of seabed sediments.
-
Petrel Sub-basin Marine Survey (GA-0335 / SOL5463) (NLECI Program) - Seabed Sediment Grain Size Data
The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was undertaken on RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less than 100 m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support the investigation of CO2 storage potential in these areas. Unconsolidated surface (seabed) sediments were collected at 11 sampling stations using a Smith_McIntyre grab (10L volume). Sediment samples were collected to provide data on a) sedimentology, b) infauna and c) the geochemical composition of the sediments. For the sedimentology (this dataset) up to 250 g of sediment was sub-sampled from the surface (0-2 cm) of the sediment recovered in the Smith_McIntyre grabs. Sub-samples were described from visual inspection, noting grain size, sorting and composition and these were stored in plastic bags and refrigerated. These were subsequently analysed at the GA laboratories to provide information on the texture and composition of the sediments at the sampling locations. Grain size measurement was undertaken by wet sieving to determine mud (<63 microns), sand (63-2000 microns) and gravel (>2000 microns) fractions as percentage of dry weight. A separate sub-sample (~1g) was used for laser diffraction measurement of the mud and sand fractions using a Malvern Mastersizer 2000, with results expressed as percentage of the total particle volume based on an average of three measurements on each sample. Particle size distributions including mean, median, and standard deviation, together with skewness and kurtosis indices were calculated. Separate sample splits were taken for measurement of the carbonate content using the carbonate bomb method following Muller and Gastner (1979).